
Searching and Strings

IST 256
Application Programming for Information Systems

Searching for Strings

•  In an array, we do a simple linear search for an item by
going through the array in order from the first and
comparing each item to the search string.

2

String [] names = new String [20];
String searchname = … ; // get a value to search for
for (int i = 0; i < names.length; i ++)
{

 if (names[i].equals(searchname))
 {
 //found one!
 }

}

Searching for Strings

•  If we want to find only one (the first one), we can save it
and exit from the loop:

3

String [] names = new String [20];
String searchname = … ; // get a value to search for
String resultname = “”;
for (int i = 0; i < names.length; i ++) {

 if (names[i].equals(searchname))
 {
 resultname = names[i];
 break;
 }

}
// display the result

“break” causes the
program to break
out of the loop;
immediately jump
to the end

Searching for Strings

•  But if we don’t find one, we can display that, too:

4

String [] names = new String [20];
String searchname = … ; // get a value to search for
String resultname = “”;
for (int i = 0; i < names.length; i ++) {

 if (names[i].equals(searchname))
 {
 resultname = names[i];
 break;
 }

}
// if still empty result, then it was not found
if (resultname.equals(“”) {

 resultname = “No match found.”
}
// display resultname

Searching for Strings
•  If there’s more than one match, we can find them all:

5

String [] names = new String [20];
String searchname = … ; // get a value to search for
String resultheader = “<html>Result: <p>:”;
String resultnames = “”;
for (int i = 0; i < names.length; i ++) {

 if (names[i].equals(searchname))
 {
 resultnames = resultnames + “<p>” + names[i];
 }

}
// if still empty result, then none was found
if (resultnames.equals(“”) {

 resultnames = “No match found.”
}
// display resultheader + resultnames

Search Criteria

•  So far, we have used an exact string match with the string
function equals

 names[i].equals(searchname)

•  Suppose that we want to find names where the search name
is the start of the name (e.g. “Alex Brown” and we search
for “Al” or “Alex”)

 names[i].startsWith(searchname)

uses the String function startsWith
6

Search Criteria

•  Or suppose that we want the strings to match regardless of
capitalization. This is called “ignoring case”, and there is
another equals method that will ignore case in doing the
comparison:

names[i].equalsIgnoreCase(searchname)

•  An alternate method is to use the .toLowerCase() method to
convert both strings to lower case and then compare them.

names[i].toLowerCase().equals(searchname.toLowerCase())

7

Search Criteria

•  Or suppose that we want to find the search string as a
substring of the name, anywhere that it occurs. There is a
String function indexOf that finds a substring and returns an
integer that is the number of the character where the substring
occurs (starting from 0)

 if searchname is “Alex”,
 searchname.indexOf(“ex”)

 returns the integer 2, the position where “ex” is in “Alex”

•  But if the substring is not found, indexOf returns -1, so our
search criteria becomes
 names[i].indexOf(searchname) != -1

8

Other String Functions

•  Other useful functions include:
–  endsWith()
–  lastIndexOf()
–  toUpperCase()

•  A complete list is found in the API under the String class:
–  http://java.sun.com/j2se/1.5.0/docs/api/

which now redirects to
http://download.oracle.com/javase/1.5.0/docs/api/

–  Where you scroll down to find the String class in the lower left pane

9

Search that returns index
•  In the examples so far, when we found a string that matches,

we display or save the string. But sometimes we should just
save the index where we found the match
–  This is particularly useful in an array of class instances, where we search on one

criteria (height of student) but want to display another (name of tallest student)

10

String [] names = new String [20];
String searchname = … ; // get a value to search for
String resultindex = -1;
for (int i = 0; i < names.length; i ++) {

 if (names[i].equals(searchname))
 {
 resultindex = i;
 break;

} }
// display the result at resultindex,
// where resultindex == -1 means “not found”

Searching for largest or smallest

•  In this case, we are not searching to match an already
known value, but searching to find the one larger or smaller
than all the rest

•  Strategy:
–  Pick the first one to be the “largest so far”,
–  Loop over the array: if any item is larger, make it be the “largest so

far”
–  At the end of the loop, the “largest so far” is largest

11

Example: Hottest Temperature
•  In this example, we assume an array of (integer) temperatures

and we find the largest value:

12

 int indexSoFar, hottestTemp;
// index of hottest temperature so far is at 0
 indexSoFar = 0;
// loop over array to keep finding index of new hottest temperature so far
 for(int i = 1; i < numtemps; i++)
 {
 if (temperatures[i] > temperatures[indexSoFar])
 {
 indexSoFar = i;
 }
 }
 hottestTemp = temperatures[indexSoFar];
 hottestLabel.setText("Hottest temperature: " + hottestTemp);

Digression on primitive types vs. classes

•  In Java, primitive types (int, double, boolean) use
operators, while classes have fields and methods. But
arrays and Strings have a mix:

13

Operators Use new constructor Use fields and
methods

Primitive types: int,
double, boolean

Yes
+, -, *, /, &&, ||

No No

Arrays Indexing: [] Mostly: new int [] .length

Strings Catenation: + No Mostly: .equals,
indexOf, etc.

Everything else No Yes Yes

