
Classes for Object-Oriented
Programming,

Inheritance,
Polymorphism

IST 256
Application Programming for Information Systems

Building a Class

•  Simple
employee
class

•  Two
public
fields

2

public class Employee
{ // employee fields (visible to subclasses)

 protected String name;
 protected double salary;

 // constructor with initial values
 public Employee(String n, double s)
 { name = n;
 salary = s;
 }
 // can have multiple constructors
 public Employee() { }

 // other methods
 public void raiseSalary(double percent)
 { salary = … ; }
 . . .

}

Using the Class

•  Employee
array with
two people

3

public class EmployeeTest
{ public void main(String[] args)
 {

 Employee [] staff = new Employee[2];

 staff[0] = new Employee (“Hannah Hacker”, 50000);
 staff[1] = new Employee (“Tony Tester”, 40000);

 // give everyone a 3% raise
 for (int i = 0; i < staff.length; i++)
 {
 staff[i].raiseSalary(3.0);
 }

 }
}

Inheritance
•  Another class can be defined that has all of the properties and

operations as the previous class, and has additional ones
•  Suppose that among our employees, some are managers. They

may also have assistants and can have bonus amounts.
•  We can make a Manager class that extends the Employee class

–  It will automatically have the fields and methods of the Employee class
–  It can have additional fields and methods
–  It can also redefine some of the methods (more on this later)

4

Employee

name
salary

Manager

name
salary
assistant
bonus

superclass subclass inherits

Terminology alert: a subclass has more stuff
than a superclass.

Building a Subclass

•  Manager
class uses
the extends
keyword to
inherit the
two fields
from the
Employee
class

•  Adds two
more fields

5

public class Manager extends Employee
{ // inherits name and salary fields

 // adds two more fields
 public String assistantname;
 public double bonus;

 // constructor with initial values
 public Manager(String n, double s,

 String a, double b)
 { name = n; salary = s;
 assistant = a; bonus = b;
 }

 . . .
}

Using the Subclass

•  Employee
array with
three people

•  One
element of
the array is
a Manager,
which
counts as an
Employee

6

public class EmployeeTest
{ public void main(String[] args)
 {

 Employee [] staff = new Employee[3];

 staff[0] = new Employee (“Hannah Hacker”, 50000);
 staff[1] = new Employee (“Tony Tester”, 40000);
 “Tony Tester”, 10000)
 staff[2] = new Manager (“Boss Boring”, 90000,

 // give everyone a 3% raise
 for (int i = 0; i < staff.length; i++)
 {
 staff[i].raiseSalary(3);
 }

 }
}

Polymorphism

•  In the previous example, the subclass Manage used the same
raiseSalary method as did all Employees

•  But we can also redefine a method of the superclass by
giving a new definition in the subclass

7

Subclass with a polymorphic method

•  Manager
class now
adds its
own
definition
of the
raiseSalary
method,
which can
do
something
special for
managers

8

public class Manager extends Employee
{ // inherits name and salary fields

 // adds two more fields
 public String assistantname;
 public double bonus;

 // constructor with initial values
 public Manager(String n, double s,

 String a, double b)
 { name = n; salary = s;
 assistant = a; bonus = b;
 }
 // another version of raiseSalary
 public void raiseSalary(double percent)
 { salary = … ;
 bonus = … ; }
 . . .

}

Using a polymorphic method

•  Same code as
before

•  Each call to
raiseSalary
will use the
appropriate
method,
either from
the Employee
class or the
Manager
class

9

public class EmployeeTest
{ public void main(String[] args)
 {

 Employee [] staff = new Employee[3];

 staff[0] = new Employee (“Hannah Hacker”, 50000);
 staff[1] = new Employee (“Tony Tester”, 40000);
 “Tony Tester”, 10000)
 staff[2] = new Manager (“Boss Boring”, 90000,

 // give everyone a 3% raise
 for (int i = 0; i < staff.length; i++)
 {
 staff[i].raiseSalary(3);
 }

 }
}

Inheritance Hierarchies

•  An application may create and use many extended classes.
•  Information systems may use these hierarchies in the design

of a system.

10

Employee

Manager Assistant Programmer

Executive

