Classes for Object-Oriented
Programming,
Inheritance,
Polymorphism

IST 256
Application Programming for Information Systems

Building a Class

public class Employee
* Simple { // employee fields (visible to subclasses)
emp]oyee protected String name;
class protected double salary;
* Two // constructor with initial values
public public Employee(String n, double s)
fields { name = n;

salary = s;

h

// can have multiple constructors
public Employee() { }

// other methods
public void raiseSalary(double percent)

{ salary=...; }

Using the Class

 Employee
array with
two people

public class EmployeeTest
{ public void main(String|[] args)

{

Employee [| staff = new Employee[2];

staff[0] = new Employee (“Hannah Hacker”, 50000);
staff[1] = new Employee (“Tony Tester”, 40000);

// give everyone a 3% raise
for (int 1 = 0; 1 < staff.length; 1++)

d
h

staff]i].raiseSalary(3.0);

Inheritance

« Another class can be defined that has all of the properties and
operations as the previous class, and has additional ones

* Suppose that among our employees, some are managers. They
may also have assistants and can have bonus amounts.

* We can make a Manager class that extends the Employee class

— It will automatically have the fields and methods of the Employee class

— It can have additional fields and methods

— It can also redefine some of the methods (more on this later)

Employee
superclass \

name inherits

Manager

salary

Terminology alert: a subclass has more stuff

name
salary
assistant
bonus

than a superclass.

subclass

Building a Subclass

* Manager
class uses
the extends
keyword to
inherit the
two fields
from the
Employee
class

 Adds two
more fields

public class Manager extends Employee
{ // inherits name and salary fields
// adds two more fields
public String assistantname;
public double bonus;

// constructor with 1nitial values
public Manager(String n, double s,
String a, double b)
{ name = n; salary =s;
assistant = a; bonus = b;

b

Using the Subclass

« Employee public class EmployeeTest
array with { Izublic void main(String[] args)
three people Employee [| staff = new Employee[3];
* One
element of staff[0] = new Employee (“Hannah Hacker”, 50000);
the array is staff[1] = new Employee (“Tony Tester”, 40000);
“Tony Tester”, 10000)
a Manager, staff[2] = new Manager (“Boss Boring”, 90000,
which
counts as an // give everyone a 3% raise
Employee for (int 1 = 0; 1 < staff.length; 1++)
d
staff]1].raiseSalary(3);
b
h
} 6

Polymorphism

* In the previous example, the subclass Manage used the same
raiseSalary method as did all Employees

« But we can also redefine a method of the superclass by
giving a new definition in the subclass

Subclass with a polymorphic method

* Manager
class now
adds its
own
definition
of the
raiseSalary
method,
which can
do
something
special for
managers

public class Manager extends Employee

{

// inherits name and salary fields
// adds two more fields

public String assistantname;
public double bonus;

// constructor with initial values
public Manager(String n, double s,
String a, double b)
{ name = n; salary =s;
assistant = a; bonus = b;
h
// another version of raiseSalary
public void raiseSalary(double percent)
{ salary=... ;
bonus=... ; }

Using a polymorphic method

Same code as
before

Each call to
raiseSalary
will use the
appropriate
method,
either from
the Employee
class or the
Manager
class

public class EmployeeTest
{ public void main(String|[] args)

{

Employee [| staff = new Employee[3];

staff[0] = new Employee (“Hannah Hacker”, 50000);

staff[1] = new Employee (“Tony Tester”, 40000);
“Tony Tester”, 10000)

staff[2] = new Manager (“Boss Boring”, 90000,

// give everyone a 3% raise
for (int 1 = 0; 1 < staff.length; 1++)

d
h

staff]1].raiseSalary(3);

Inheritance Hierarchies

e An application may create and use many extended classes.

* Information systems may use these hierarchies in the design
of a system.

Employee
Manager Assistant Programmer

v

Executive

10

