
Decision Structures: Conditional Statements

Many times in programming, you want to make a decision based on the values of the
variables and select different courses of action based on that.

If Statements

The first type of decision structure allows the selection of either one or two alternatives based
on a condition. The one alternative version is the If-Then statement.

If the condition is true, then the statements in [some action] are executed.
If the condition is false, no actions are executed.

Example:
1. Shopping problem. If you purchase $50 or more, you get 10% off for your total bill.

double total;
total = ?? ; // total is assigned a value (or one from input)
if (total > 50.0) {
 total = total - (total * 0.10);
}

The If-Then-Else statement.

 If the condition is true, then the statements in [some action] are executed.
 If the condition is false, then [some different actions] are executed.

2, A cell phone user monthly payment problem. If a cell phone user has the data plan, the
fee = 59.99; if a user does not have the data plan, the fee = 39.99.

boolean dataplan; //a boolean variable
data plan = ?? // dataplan is either true or false
if (dataplan) {
fee = 59.99;
}
else {
fee = 39.99;
}

Conditions as Comparisons:

In the first example, the condition used a comparison operator between two values. This type
of conditional statement has the form:

IF (number or variable) (comparison) (number or variable)
 [some actions]

ELSE
[some different actions]

Comparison Operators

 operator Example Meaning

==
(int, double, Boolean) EmpCode == 0 Is employee code equal to 0?

Equal to .equals
(String) str.equals(“abc”) Is str variable equal to “abc”?

Greater than > Hours > 40 Are the hours greater than 40?
Greater than
or equal to >= Revenue >=

Costs Is Revenue greater than or equal to costs?

Less than < thisyear <
lastyear

Is this year’s revenue less than last year’s?

Less than or
equal to

<= Total <= 1000.0 Is the total value less than or equal to 1000
(dollars)?

Not equal to != Number <> 0 Is the number not equal to zero?

Conditions as Booleans:

Notice that the result of computing a comparison operator on two values is always true or false,
which is a boolean value. In fact any boolean value can be used as a condition, such as in our
section example where we used a boolean variable.

Nested If Statements

In the actions of an If statement, there can be more If statements. These can be used to test
more conditions.

Example: Suppose that there is a String variable called PayStatus that is either “Hourly” or
“Salaried”, and that we want to compute the Pay of an employee using a variable Hours that
tells how many hours they worked that week, and the variable PayRate that tells how much
per hour that they make. Salaried employees are always paid as if they worked 40 hours, no
matter how many hours they actually worked. If hourly employees work more than 40 hours
in a week, then they get 1.5 times their pay rate for any hours over 40.

 if (PayStatus.equals("Hourly")) {
 if (hours > 40)
 pay = (payrate*40) + (1.5*payrate*(hours - 40));
 else
 pay = payrate*hours;
 }
 else {
 pay = payrate*40;
 }

More about Conditions

If you have an If statement and you want to test if two conditions are both true, you can use
&& (and) operator:

if (PayStatus.equals("Hourly") && hours > 40) {
 . . .

If you have an If statement and you want to test if at least one of two conditions is true, you
can use || (or) operator:

if (PayStatus.equals("Hourly") || hours > 40) {
 . . .

