Regular Expressions
Finite State Automata

http://xkcd.com/208/
Overview

• Regular expressions are essentially a tiny, highly specialized programming language (embedded inside Python and other languages)
• Can use this little language to specify the rules for any set of possible strings you want to match
 – Sentences, e-mail addresses, ads, dialogs, etc
• ``Does this string match the pattern?'', or ``Is there a match for the pattern anywhere in this string?'``
• Regular expressions can also be used as a language generator; regular expression languages are the first in the Chomsky hierarchy
Introduction

- Regular Expression a.k.a. regex, regexp or RE
 - A language for specifying text search strings
 - An example (matches names like “Jane Q. Public”):
 - Perl or Python:
      ```regex
      \b[A-Z][a-z]++[A-Z]\.+[A-Z][a-z]+\b
      ```
 - Applications/Tools using Regular Expressions:
 - All modern programming languages (most notably Perl), but also Python, Java, php, etc.
 - **In this talk, we use the (Perl) convention that regular expressions are surrounded by / - Python uses \"**
Introduction

• Helpful applications of ‘regex’

 – Recognizing all email addresses
 @.......edu
 @.......gov
 @.......com

 – Recognizing all URLs
 • A fairly predictable set of characters & symbols
 selected from a finite set (e.g. a-z, www, http, ~, /)
 – What other ones?
Introduction

• In language theory, Regular Expressions specify a language that can be recognized by Finite State Automata a.k.a. Finite Automaton, Finite State Machine, FSA or FSM
 – An abstract machine which can be used to implement regular expressions (etc.).
 – Has a finite number of states, and a finite amount of memory (i.e., the current state).
 – Can be represented by directed graphs or transition tables
Automata Theory: Concepts and Notations

- **Language**: A set of strings over an alphabet
 - Also known as a formal language; may not bear any resemblance to a natural language, but could model a subset of one.

- **Graph**: A set of nodes (or vertices), some or all of which may be connected by edges.
 - An example: – A directed graph example:

![Graph Example](image-url)
Regular Languages

• The first class of languages covered in Automata Theory.
• A regular expression defines a regular language over an alphabet \(\Sigma \):
 – The empty set is a regular language: //
 – Any symbol from \(\Sigma \) is a regular language:
 \[\Sigma = \{ a, b, c \} \quad \text{/}a/ \quad \text{/}b/ \quad \text{/}c/ \]
 – Two concatenated regular languages is a regular language:
 \[\Sigma = \{ a, b, c \} \quad \text{/}ab/ \quad \text{/}bc/ \quad \text{/}ca/ \]
Regular Languages

- Regular language (continued):
 - The **union** (or **disjunction**) of two regular languages is a regular language:
 \[\Sigma = \{ a, b, c \} \quad /ab \mid bc/ \quad /ca \mid bb/ \]
 - The **Kleene closure** (denoted by the **Kleene star**: \(* \)) of a regular language is a regular language:
 \[\Sigma = \{ a, b, c \} \quad /a*/ \quad /(ab \mid ca)*/ \]
 - Parentheses group a sub-language to override **operator precedence**

- The regular languages are the first in the Chomsky hierarchy (context-free languages and context-sensitive languages are the next)

- Regular languages are exactly the set of languages recognized by finite automata
Regular Expressions for Matching

- Perl’s (and Python’s) regular expression syntax is a superset of the notation required to express a regular language.
 - Makes more useful and succinct for matching expressions
 - Some examples and shortcuts:

1. `/[abc]/ = /a|b|c/` **Character class; disjunction**
2. `/[b-e]/ = /b|c|d|e/` **Range in a character class**
3. `\n|\r/` **Special escapes (newline, return)**
4. `/. /` **Wildcard matches any character**
5. `[^b-e]/` **Complement of character class**

6. `/a*/ /([af]*)/ /((abc)*/` **Kleene star: zero or more**
7. `/a?/ /((ab|ca)/` **Zero or one**
8. `/a+/ /((a-zA-Z]1|ca)+/` **Kleene plus: one or more**
9. `/a{8} /b{1,2} /c{3,}/` **Counters: exact repeat quantification**
Regular Expressions

• Anchors
 – Constrain the position(s) at which a pattern may match
 – Think of them as “extra” alphabet symbols, though they actually match ϵ (the zero-length string):
 – `^a/` Pattern must match at beginning of string
 – `a$/` Pattern must match at end of string
 – `/\bword23\b/` “Word” boundary: `/[^a-zA-Z0-9_][a-zA-Z0-9_]/`
 or `/[^a-zA-Z0-9_][a-zA-Z0-9_-]/`
 – `/\B23\B/` “Word” non-boundary
Regular Expressions

- **Escapes**
 - A backslash “\” placed before a character is said to “escape” (or “quote”) the character. There are six classes of escapes:
 1. **Numeric character representation**: the octal or hexadecimal position in a character set: “\012” = “\xA”
 2. **Meta-characters**: The characters which are syntactically meaningful to regular expressions, and therefore must be escaped in order to represent themselves in the alphabet of the regular expression: “[] () { } | ^ $. ? + * \” (note the inclusion of the backslash).
 3. **“Special” escapes** (from the “C” language):
 - newline: “\n” = “\xA”
 - carriage return: “\r” = “\xD”
 - tab: “\t” = “\x9”
 - formfeed: “\f” = “\xC”
Regular Expressions

• **Escapes** (continued)

 – **Classes of escapes** (continued):

 4. **Aliases**: shortcuts for commonly used character classes.
 (Note that the capitalized version of these aliases refer to the **complement** of the alias’s character class):

 – whitespace: \s = \[\t\r\n\f\v\]
 – digit: \d = \[0-9\]
 – word: \w = \[a-zA-Z0-9_\]
 – non-whitespace: \S = \[^ \t\r\n\f\]
 – non-digit: \D = \[^0-9\]
 – non-word: \W = \[^a-zA-Z0-9_\]

 5. **Memory/registers/back-references**: \1, \2, etc.

 6. **Self-escapes**: any character other than those which have special meaning can be escaped, but the escaping has no effect: the character still represents the regular language of the character itself.
Regular Expressions

- Greediness
 - Regular expression counters/quantifiers which allow for a regular language to match a variable number of times (i.e., the Kleene star, the Kleene plus, “?”, “\{min,max\}”, and “\{min,\}”) are inherently greedy:
 - That is, when they are applied, they will match as many times as possible, up to \(\text{max} \) times in the case of “\{min,max\}”, at most once in the “?” case, and infinitely many times in the other cases.
 - Each of these quantifiers may be applied non-greedily, by placing a question mark after it. Non-greedy quantifiers will at first match the \text{minimum} number of times.
 - For example, against the string “From each according to his abilities”:
 - `/\w+.*/\w+/` matches the entire string, and
 - `/\w+.*/?\b\w+/` matches just “From each”
Using Regular Expressions

• In Perl, a regular expression can just be used directly for matching, the following is true if the string matches:

 \text{string} = \sim m/ <\text{regular expr}> /

• But in many other languages, including Python (and Java), the regular expression is first defined with the compile function

 \text{pattern} = \text{re.compile}(''<\text{regular expr}>')

• Then the pattern can be used to match strings

 \text{m} = \text{pattern.search}(\text{string})

 where \text{m} will be true if the pattern matches anywhere in the string
More Regular Expression Functions

- Python includes other useful functions
 - `pattern.match` – true if matches the beginning of the string
 - `pattern.search` – scans through the string and is true if the match occurs in any position
 These functions return a “MatchObject” or None if no match found
 - `pattern.findall` – finds all occurrences that match and returns them in a list

- MatchObjects also have useful functions
 - `match.group()` – returns the string(s) matched by the RE
 - `match.start()` – returns the starting position of the match
 - `match.end()` – returns the ending position of the match
 - `match.span()` – returns a tuple containing the start, end
 - And note that using the MatchObject as a condition in, for example, an If statement will be true, while if the match failed, None will be false.
Substitution with Regular Expressions

– Once a regular expression has matched in a string, the matching sequence may be replaced with another sequence of zero or more characters:

 • Convert “red” to “blue”
 – Perl: $string =~ s/red/blue/g;
 – Python: p = re.compile("red") string = p.sub("blue", string)

 • Convert leading and/or trailing whitespace to an ‘=’ sign:
 – Python: p = re.compile("^\s+|\s+$")
 string = p.sub("=",string)

 • Remove all numbers from string: “These 16 cows produced 1,156 gallons of milk in the last 14 days.”
 – Python: p = re.compile(" \d{1,3}(,\d{3})*")
 string = p.sub("",string)
 – The result: “These cows produced gallons of milk in the last days.”
Extensions to Regular Expressions

• Memory/Registers/Back-references
 – Many regular expression languages include a memory/register/back-reference feature, in which sub-matches may be referred to later in the regular expression, and/or when performing replacement, in the replacement string:
 • Perl: `/(\w+)\s+\1\b/` matches a repeated word
 • Python: `p = re.compile("(\w+)\s+\1\b")
 p.search("Paris in the the spring").group()
 returns ‘the the’

 – Note: finite automata cannot be used to implement the memory feature.
Regular Expression Examples

Character classes and Kleene symbols

\[[A-Z] \] = one capital letter
\[[0-9] \] = one numerical digit
\[[st@!9] \] = s, t, @, ! or 9 (equivalent to using | on single characters)
\[[A-Z] \] matches G or W or E (a single capital letter)
 does not match GW or FA or h or fun
\[[A-Z]+ \] = one or more consecutive capital letters
 matches GW or FA or CRASH
\[[A-Z]？ \] = zero or one capital letter
\[[A-Z]* \] = zero, one or more consecutive capital letters
 matches on EAT or I
so, \[[A-Z]ate \]
 matches Gate, Late, Pate, Fate, but not GATE or gate
and \[[A-Z]+ate \]
 matches: Gate, GRate, HEate, but not Grate or grate or STATE
and \[[A-Z]*ate \]
 matches: Gate, GRate, and ate, but not STATE, grate or Plate
Regular Expression Examples (cont’d)

[A-Za-z] = any single letter
so [A-Za-z]+ matches on any word composed of only letters,
 but will not match on “words”: bi-weekly, yes@SU or IBM325

they will match on bi, weekly, yes, SU and IBM

a shortcut for [A-Za-z] is \w, which in Perl also includes _

so (\w)+ will match on Information, ZANY, rattskellar and jeuvbaew
\s will match whitespace
so (\w+)\s(\w+) will match real estate or Gen Xers
Regular Expression Examples (cont’d)

Some longer examples:

```regex
([A-Z][a-z]+)\s([a-z0-9]+)
```

matches: Intel c09yt745 but not IBM series5000

```
[A-Z]\w+\s\w+\s\w+[!]
```

matches: The dog died!

It also matches that portion of “he said, “The dog died!”

```
[A-Z]\w+\s\w+\s\w+[!]$ 
```

matches: The dog died!

But does not match “he said, “The dog died!” because the $ indicates end of Line, and there is a quotation mark before the end of the line

```
(\w+ats?\s)+
```

parentheses define a pattern as a unit, so the above expression will match:

Fat cats eat Bats that Splat
Regular Expression Examples (cont’d)

To match on part of speech tagged data:

(\w+[-]?\w+\|[A-Z]+) will match on:
 bi-weekly|RB
 camera|NN
 announced|VBD

(\w+\|V[A-Z]+) will match on:
 ruined|VBD
 singing|VBG
 Plant|VB
 says|VBZ

(\w+\|VB[DN]) will match on:
 coddled|VBN
 Rained|VBD
 But not changing|VBG
Regular Expression Examples (cont’d)

Phrase matching:

\(a\|DT \ ([a-z]+\|JJ[S^R]?) \ (\w+\|N[NPS]+) \)

matches:
\(a\|DT \) loud\|JJ noise\|NN
\(a\|DT \) better\|JJR Cheerios\|NNPS

\((\w+\|DT) \ (\w+\|VB[D^NG])^* \ (\w+\|N[NPS]+)+ \)

matches:
\(the\|DT \) singing\|VBG elephant\|NN seals\|NNS
an\|DT \) apple\|NN
an\|DT \) IBM\|NP computer\|NN
\(the\|DT \) outdated\|VBD aging\|VBG Commodore\|NNNP computer\|NN hardware\|NN
Helpful Regular Expression Websites

1. Tutorials:
 1.a. The Python Regular Expression HOWTO:

 http://docs.python.org/howto/regex.html

 A good introduction to the topic, and assumes that you will be using Python.

2. Free interactive testing/learning/exploration tools:
 2.a. Regular Expression tester:

 http://www.roblocher.com/technotes/regexp.aspx

3. Regular expression summary pages
 3.a. Dave Child’s Regular Expression Cheat Sheet from addedbytes.com

Finite-state Automata

• Representation
 – An FSA may be represented as a directed graph; each node (or vertex) represents a state, and the edges (or arcs) connecting the nodes represent transitions.
 – Each state is labelled.
 – Each transition is labelled with a symbol from the alphabet over which the regular language represented by the FSA is defined, or with ε, the empty string.
 – Among the FSA’s states, there is a start state and at least one final state (or accepting state).
Finite-state Automata (2/23)

- **Representation** (continued)
 - An FSA may also be represented with a state-transition table. The table for the above FSA:

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>Ø</td>
<td>2</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>Ø</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>
Finite-state Automata (3/23)

• Given an input string, an FSA will either accept or reject the input.
 – If the FSA is in a final (or accepting) state after all input symbols have been consumed, then the string is accepted (or recognized).
 – Otherwise (including the case in which an input symbol cannot be consumed), the string is rejected.
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

\[\begin{array}{llll}
\text{State} & \text{a} & \text{b} & \text{c} \\
0 & 1 & \emptyset & \emptyset \\
1 & \emptyset & 2 & \emptyset \\
2 & \emptyset & \emptyset & 3 \\
3 & 4 & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & \emptyset \\
\end{array}\]

IS\(_1\):

- a
- b
- c
- a

IS\(_2\):

- c
- c
- b
- a

IS\(_3\):

- a
- b
- c
- a
- c
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

IS_1:

\[
\begin{array}{cccc}
| & a & b & c & a \\
\hline
0 & 1 & \emptyset & \emptyset & \emptyset \\
1 & \emptyset & 2 & \emptyset & \emptyset \\
2 & \emptyset & \emptyset & 3 & \emptyset \\
3 & 4 & \emptyset & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & \emptyset & \emptyset \\
\end{array}
\]

IS_2:

\[
\begin{array}{cccc}
| & c & c & b & a \\
\hline
0 & 1 & \emptyset & \emptyset & \emptyset \\
1 & \emptyset & 2 & \emptyset & \emptyset \\
2 & \emptyset & \emptyset & 3 & \emptyset \\
3 & 4 & \emptyset & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & \emptyset & \emptyset \\
\end{array}
\]

IS_3:

\[
\begin{array}{cccc}
| & a & b & c & a & c \\
\hline
0 & 1 & \emptyset & \emptyset & \emptyset & \emptyset \\
1 & \emptyset & 2 & \emptyset & \emptyset & \emptyset \\
2 & \emptyset & \emptyset & 3 & \emptyset & \emptyset \\
3 & 4 & \emptyset & \emptyset & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
\end{array}
\]
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

- **State Transition Diagram**

- **Input Table**

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>1</td>
<td>∅</td>
<td>2</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>∅</td>
<td>∅</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>4</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>

Initial States

- **IS1:**
 - a b c a

- **IS2:**
 - c c b a

- **IS3:**
 - a b c a c
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

Input State

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>1</td>
<td>∅</td>
<td>2</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>∅</td>
<td>∅</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>4</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>

IS₁:

| a | b | c | a |

IS₂:

| c | c | b | a |

IS₃:

| a | b | c | a | c |
Finite-state Automata (7/23)

\[\Sigma = \{ \text{a, b, c} \} \]

Input

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>∅</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>∅</td>
</tr>
</tbody>
</table>

IS₁:

| a | b | c | a |

IS₂:

| c | c | b | a |

IS₃:

| a | b | c | a | c |
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

State & **Input**

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Input States

- **IS\(_1\):**
 - a b c a

- **IS\(_2\):**
 - c c b a

- **IS\(_3\):**
 - a b c a c
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

State Transition Diagram:

- \(q_0 \) to \(q_1 \) on input 'a'
- \(q_1 \) to \(q_2 \) on input 'b'
- \(q_2 \) to \(q_3 \) on input 'c'
- \(q_3 \) to \(q_4 \) on input 'a'

Input Table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>2</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>4</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

Input Strings:

- IS\(_1\): a b c a
- IS\(_2\): c c b a
- IS\(_3\): a b c a c
Finite-state Automata (10/23)

\[\Sigma = \{ a, b, c \} \]

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>&</td>
<td>&</td>
</tr>
<tr>
<td>1</td>
<td>&</td>
<td>2</td>
<td>&</td>
</tr>
<tr>
<td>2</td>
<td>&</td>
<td>&</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>&</td>
<td>&</td>
</tr>
<tr>
<td>4</td>
<td>&</td>
<td>&</td>
<td>&</td>
</tr>
</tbody>
</table>

Input

- IS₁: a b c a
- IS₂: c c b a
- IS₃: a b c a c
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

\[\begin{array}{c|c|c|c}
\text{State} & a & b & c \\
\hline
0 & 1 & \emptyset & \emptyset \\
1 & \emptyset & 2 & \emptyset \\
2 & \emptyset & \emptyset & 3 \\
3 & 4 & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & \emptyset \\
\end{array} \]

\[IS_1: \]
\[\begin{array}{|c|c|c|}
\hline
a & b & c \\
\hline
\end{array} \]

\[IS_2: \]
\[\begin{array}{|c|c|c|}
\hline
 & & a \\
\end{array} \]

\[IS_3: \]
\[\begin{array}{|c|c|c|}
\hline
a & b & c \\
\hline
\end{array} \]
Finite-state Automata

\[\Sigma = \{ a, b, c \} \]

Graph:

- States: \(q_0, q_1, q_2, q_3, q_4 \)
- Edges:
 - \(q_0 \rightarrow a \rightarrow q_1 \)
 - \(q_1 \rightarrow b \rightarrow q_2 \)
 - \(q_2 \rightarrow c \rightarrow q_3 \)
 - \(q_3 \rightarrow a \rightarrow q_4 \)

Input States:

IS_1:

\[
\begin{array}{cccc}
 a & b & c & a \\
\end{array}
\]

IS_2:

\[
\begin{array}{cccc}
 c & c & b & a \\
\end{array}
\]

IS_3:

\[
\begin{array}{cccc}
 a & b & c & a & c \\
\end{array}
\]

Input Table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>2</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>4</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
Finite-state Automata

Σ = \{ a, b, c \}

\[\begin{array}{cccc}
\text{State} & a & b & c \\
\hline
0 & \emptyset & 1 & \emptyset & \emptyset \\
1 & \emptyset & 2 & \emptyset & \emptyset \\
2 & \emptyset & \emptyset & 3 & \emptyset \\
3 & 4 & \emptyset & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & \emptyset & \emptyset \\
\end{array}\]

Input

\[\begin{array}{|c|c|c|c|}
\hline
\text{State} & \text{Input} & a & b & c \\
\hline
0 & 1 & \emptyset & \emptyset & \emptyset \\
1 & 2 & \emptyset & \emptyset & \emptyset \\
2 & 3 & \emptyset & \emptyset & \emptyset \\
3 & 4 & \emptyset & \emptyset & \emptyset \\
4 & 5 & \emptyset & \emptyset & \emptyset \\
\hline
\end{array}\]
Finite-state Automata

\[\Sigma = \{a, b, c\} \]

State transitions:

- \(q_0 \) to \(q_1 \) on input 'a'
- \(q_1 \) to \(q_2 \) on input 'b'
- \(q_2 \) to \(q_3 \) on input 'c'
- \(q_3 \) to \(q_4 \) on input 'a'

Input table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>Ø</td>
<td>2</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>Ø</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>

Input sequences:

- \(IS_1: \) a, b, c, a
- \(IS_2: \) c, c, b, a
- \(IS_3: \) a, b, c, a, c
Finite-state Automata

• Determinism
 – An FSA may be either deterministic (DFSA or DFA) or non-deterministic (NFSA or NFA).
 • An FSA is deterministic if its behavior during recognition is fully determined by the state it is in and the symbol to be consumed.
 – I.e., given an input string, only one path may be taken through the FSA.
 • Conversely, an FSA is non-deterministic if, given an input string, more than one path may be taken through the FSA.
 – One type of non-determinism is ε-transitions, i.e. transitions which consume the empty string (no symbols).
Finite-state Automata

- An example NFA:

\[\Sigma = \{ \text{a, b, c} \} \]

The above NFA is equivalent to the regular expression \(/ab^*ca?/ \).
Properties of REs and RSA

• Both regular expressions and finite-state automata represent regular languages.
• The basic regular expression operations are: concatenation, union/disjunction, and Kleene closure.
• The regular expression language is a powerful pattern-matching tool.
• Any regular expression can be automatically compiled into an NFA, to a DFA, and to a unique minimum-state DFA.
• An FSA can use any set of symbols for its alphabet, including letters and words.