NLP Lab Session Week 1
August 28, 2013

Starting an NLTK Session

Python can be run on the command line to run Python programs (that have been written in
a text editor or an IDE (Integrated Development Environment)) or as an interpreter, where
you just type little pieces of Python on the interpreter line and it runs them for you. We
will mostly be running Python in interpreter mode in an IDLE window.

If the Python IDLE icon is on your desktop, just double-click that to open the Idle window.
To open the Python IDLE window, go to All Programs->Python 2.7 -> IDLE (Python GUI)
It's ok if it’s Python 2.6, but don’t try to use any version of Python 3.

You will probably want to work by having the IDLE window open for testing NLTK and a
browser window open with these instructions. You may also want to have a separate tab

or window open to the NLTK book: http://www.nltk.org/book/, where these examples are
taken from Chapter 1.

In the following, examples for you to try are given following the Python Idle prompt of >>>.
You can copy and paste the Python example into the Idle window, or you can type the
example in.

Getting Started in Python and NLTK

Start by typing a couple of examples of arithmetic into the Python interpreter. For example,
“1 + 2" is an arithmetic expression and Python will compute a result:
>>>1+ 2

Note that if you want to type in a string of text, you surround the string with quotes.
>>> ‘hello’

(In Python, you can usually also use double quotes. But note that whenever you copy/paste
quotes from a Word of PDF document, you may get non-programming quotes, and you may
have to type them directly from the keyboard.)

In programming, when we have a value of some type (like the number 3 or the string
‘hello’), we can save that value by assigning it to a variable.

>>>num=1+2

>>>num

In this example, the name of the variable is “num” and its value is 3.

Next, you use the Python “import” statement to load the data used in the book examples
into the Python environment:

>>> from nltk.book import *

This command has loaded modules, functions and data from the nltk.book module. Among
the loaded objects, it has loaded 9 of the text examples available from the corpora package
(only a small number of them!). It has used the variable names text1 through text9 for
these examples, and already assigned them values. If you type the variable name, you get a
description of the text:

>>> text]

The variables sent1 through sent9 have been set to be a list of tokens of the first sentence
of each text.
>>> sentl

Note that the first sentence of the book Moby Dick is “Call me Ishmael.” and that this
sentence has been already separated into tokens in the variable sentl. Compare the value
of sent1 with the following variable:

>>> sentltext = ‘Call me Ishmael.”

Searching Text

The text data structure has a number of functions to operate on text. One is called
“concordance”, and it will search for any word that you give to the function and show you
the occurrences and some surrounding context.

>>> textl.concordance("monstrous")

Observe the use of the arrow keys with the enter key to select and modify previous lines in
Python, and try a similar example.
>>> text2.concordance("affection”)

Another function is “similar” which finds all the words that are used in the same context as
the one given, where the context is the word before and the word after.
>>> textl.similar("monstrous")

We can use this to compare how the same word is used differently in other texts.
>>> text2.similar("monstrous")

Counting Vocabulary

Each text from the books was separated into a list of tokens, and this is one of the first NLP
processing steps. The tokens usually consist of words and all the punctuation and other
symbols occurring in the text. To further investigate text, we can count the occurrences of
words.

We start by using the Python length function, “len” to tell us how many things are in a list.
(Strictly speaking, each text variable is an object of type nltk.text.Text, which contains the

text string and some other functions, but we’re trying not to explain much programming
here.)
>>> len(text3)

>>> len(text4)

Now this is the total number of tokens, and we might also want to find out how many
unique words there are, not counting repetitions. The Python “set” function removes the
repetitions, and we can apply the “sorted” function to that, returning the resulted sorted
list of tokens. If we type the following, lots of words will flash by on the screen.

XXX >>>sorted(set(text3))

Instead, we can just find the length of that list.
>>> len(sorted(set(text3)))

Or we can specify just to print the first 30 words in the list of sorted words:
>>> sorted(set(text3))[:30]

Now let’s compute the ratio of the total number of tokens to the number of unique tokens
and we’ll get an average of how many repetitions there are for each word. First we get a
division operator that uses real arithmetic (aka floating point) instead of integer and then
we divide to get the ratio.

>>> from __future__ import division

>>> len(text3) / len(set(text3)
(On average, each word is used about 16 times.)

Now let’s search for and count occurrences of particular words and compare that to the
total number of words.

>>> text3.count("smote")

Compute the fraction of the number of occurrences of the word compared with the total
number of words and then multiply by 100 to get a percentage.

>>> 100 * text3.count('smote') / len(text3)

How does this compare with a more common word, such as the word “a”?
>>> 100 * text3.count('a’) / len(text3)

Try it Out:

1. How many times does the word “lol” occur in text5? What is the percentage of its
occurrences in the text? [Warning: text5 is uncensored chat]

Think of another word to find occurrences and get the number of occurrences and its
percentage in the text. Save the word, the number of occurrences and its percentage in the
text to post at the end of class.

Processing Text

In the first part of this lab, we counted words from text that had already been tokenized, i.e.
separated into words. Now we’ll look at some text examples that we will need to tokenize.

In addition to the examples that we imported for the NLTK book above, the NLTK has a
number of other corpora, described in Chapter 2. In order to see these, type in

>>> import nltk

You can then view some books obtained from the Gutenberg on-line book project:
>>> nltk.corpus.gutenberg.fileids()

For purposes of this lab, we will work with the first book, Jane Austen’s “Emma”. First, we
save the first fileid (number 0 in the list) into a variable named file1 so that we can reuse it:

>>> filel = nltk.corpus.gutenberg.fileids() [0]
>>> filel

We can get the original text, using the raw function:
>>> emmatext = nltk.corpus.gutenberg.raw(file1)
>>> len(emmatext)

Since this is quite long, we can view part of it, e.g. the first 120 characters
>>> emmatext[:120]

NLTK has several tokenizers available to break the raw text into tokens; we will use one
that separates by white space and also by special characters (punctuation):

>>> emmatokens = nltk.wordpunct_tokenize(emmatext)

>>> len(emmatokens)

View the first 50 tokens
>>> emmatokens[:50]

We probably want to use the lowercase versions of the words:
>>> emmawords = [w.lower() for w in emmatokens]

>>> emmawords[:50]

>>> len(emmawords)

We can further view the words by getting the unique words and sorting them:

>>> emmavocab = sorted(set(emmawords))
>>> emmavocab[:50]

We can see that we will probably want to get rid of these special characters - Regular
Expressions to the Rescue! (as in xkcd _), but we’ll work on that next week.
Exercise to submit this week:

Go to Blackboard and find the Discussion for the first week exercises. Create a postin
which you:

1. State which text, word, frequency and percentage you got in the “try it out” section.

