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Parsing defined: 

•  The process of finding a derivation (i. e. sequence of 
productions) leading from the START symbol to a 
TERMINAL symbol 
–  Shows how a particular sentence could be generated by 

the rules of the grammar 
•  If sentence is structurally ambiguous, more than one 

possible derivation is produced 
•  Can solve both the recognition and analysis problems 

–  Is this sentence derived from this grammar? 
–  Give the derivation(s) that can derive this sentence. 

•  Parsing algorithms give a strategy for finding a derivation 
by making choices among the derivation rules and deciding 
when the derivation is complete or not. 



Top-down Parser 

•  Hypothesis-driven 
–  At each stage, parser hypothesizes a structure, and tests 

whether data (next word in sentence) fits the hypothesis 
•  Looks at goal first (S) and then sees which rules can be 

applied 
–  Typically progresses from top-to-bottom, left-to-right 
–  Non-deterministic (can be rewritten in more than one way) 

•  When rules derive lexical elements (words), check with the 
input to see if the right sentence is being derived 

•  An algorithm may include a backtracking mechanism 
–  When it is determined that the wrong rule has been used, 

it backs up and tries another rule 



Example Grammar 
•  The flight grammar from the text: 
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Example Derivation 
•  Derivation for “Book that flight” (from the text) 

–  The Start symbol 
 

–  Can derive 3 rules as follows: 
 
 
 
 

–  Each non-terminal can derive additional rules 
 
 
 
 
 
 

–  Only the last two trees can derive the word “book” as first in the input 5 



Bottom-up Parser  

•  Data-driven 

•  Looks at words in input string first, checks / assigns their 
category(ies), and tries to combine them into acceptable 
structures in the grammar 

•  Involves scanning the derivation so far for sub-strings which 
match the right-hand-side of grammar / production rules and 
using the rule that would show their derivation from the non-
terminal symbol of that rule 
 



Bottom-up Derivation 
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–  Starts with input text 
 
 

–  derive the text from rules, in this case, two possible lexical rules 
 
 
 

–  Each of those can be derived from nonterminals 



Bottom-Up Derivation 
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•  Only the rightmost tree can continue the derivation here: 
 
 
 
 
 
 

•  And only one succeeds:   S -> VP 



Bottom-up Parsing 
•  Algorithm called shift/reduce parsing 

–  Scans the input from left to right and keeps a “stack” of the partial 
parse tree so far 

–  The shift operation looks at the next input and shifts it onto the stack 
–  The reduce operation looks at N symbols on the stack and if they 

match the RHS of a grammar rule, reduces the stack by replacing 
those symbols with the nonterminal 

•  Also must either incorporate back-tracking or must keep 
multiple possible parses 
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Parsing issues 

•  Top-down 
–  Only searches for trees that can be answers (i.e. S’s) 
–  But also suggests trees that are not consistent with any of the words 

•  Bottom-up 
–  Only forms trees consistent with the words 
–  But suggest trees that make no sense globally 

•  Note that in the previous example, there was local 
ambiguity between “book” being a verb or a noun that was 
resolved at the end of the parse 

•  But examples with structural ambiguity will not be resolved, 
resulting in more than one possible derivation 
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Working with Parsing 
•  NLTK parsing demos 

–  Top-down parsing using a recursive descent algorithm 
•  Top down parsing with back-tracking 
•  Must not have left-recursion in the grammar rules 

 
     nltk.app.rdparser() 

 
–  Bottom-up parsing using a shift-reduce algorithm 

•  Instead of back-tracking or multiple parses, this NLTK 
implementation requires outside intervention to apply the 
correct rule when there is a choice 
 
     nltk.app.srparser() 
 

•  Described in NLTK book, Chapter 8, Analyzing Sentence Structure 
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Structural Ambiguity 
•  One morning I shot an elephant in my pajamas.  How he got into my 

pajamas I don’t know.  Groucho Marx, Animal Crackers, 1930. 
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Classical Parsing 

•  In addition to the multiple parses due to structural 
ambiguity, typical grammars built before the 1990’s would 
overgeneralize 
–  Real broad-coverage language grammar could give rise to millions 

of parses on a single sentence 

•  Structuring grammar to restrict parses would leave up to 
30% of the sentence without parses 
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Parsing Algorithms 

•  The simple parsers that we have seen are exponential in time 
(recursive descent with back-tracking) and (shift reduce with 
back-tracking) 

•  Avoid back-tracking and re-doing subtrees 
–  Recall that the backtracking recursive descent expanded some 

subtrees multiple times 

•  Use forms of dynamic programming to search for good parse 
trees 
–  Attempt to perform exponential process in polynomial time 
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Chart Parsers 

•  CKY (Cocke-Kasami-Younger) algorithm is an example 
–  Bottom-up parser 
–  Requires grammar to be in Chomsky Normal Form, with only two 

symbols on the right-hand-side of each production 
•  All CFG grammars have a Chomsky Normal Form 

–  Grammar rule with 3 RHS symbols:  NP -> Det NP PP 
–  Transformed to equivalent grammar with only 2 RHS symbols: 

  NP -> Det NPtemp 
  Nptemp -> NP PP 

–  Fills in a data structure called a chart or a parse triangle 

•  Binarization is key in reducing exponential process 
–  Where binarization means only reducing rules with 2 RHS symbols 
–  Other parsers, such as Earley’s algorithm, use similar chart ideas to 

work on two subtrees at a time 
–  Key idea in parser development from 1970 - 1990 15 



CKY Parsing 
•  For input of length n, fills a parse table triangle of size (n+1, n+1) , 

where each element has the non-terminal production representing the 
span of text from position i to j. 
•  Cells in first (bottom) layer describe trees of single words 
•  Cells in second layer describes how rewrite rules can be used to 

combine trees in first layer for trees with two words 
•  Etc. 
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 the              man          saw          water 
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N → fish 0.2 
V → fish 0.6 
NP → N 0.14 
VP → V 0.06 
S → VP 0.006 
 
 
 

N → people 0.5 
V → people 0.1 
NP → N 0.35 
VP → V 0.01 
S → VP 0.001 
 
 

N → fish 0.2 
V → fish 0.6 
NP → N 0.14 
VP → V 0.06 
S → VP 0.006 
 N → tanks 0.2 

V → tanks 0.1 
NP → N 0.14 
VP → V 0.03 
S → VP 0.003 
 
 
 

NP → NP NP 
              0.0049 
VP → V NP 
              0.105 
S → VP 
              0.0105 
 

 
 

NP → NP NP 
              0.0049 
VP → V NP 
              0.007 
S → NP VP 
              0.0189 

NP → NP NP 
              0.00196 
VP → V NP 
              0.042 
S → VP 
              0.0042 
 

NP → NP NP 
              0.0000686 
VP → V NP 
              0.00147 
S → NP VP 
              0.000882 

NP → NP NP 
              0.0000686 
VP → V NP 
              0.000098 
S → NP VP 
              0.01323 
 
 
 

NP → NP NP 
         
0.0000009604 
VP → V NP 
          0.00002058 
S → NP VP 
          0.00018522 
 

0 

1 

2 

3 

4 

1 2 3 4 fish people fish tanks 

S → NP VP  0.9 
S → VP   0.1 
VP → V NP  0.5 
VP → V   0.1 
VP → V @VP_V  0.3 
VP → V PP  0.1 
@VP_V → NP PP  1.0 
NP → NP NP  0.1 
NP → NP PP  0.2 
NP → N   0.7 
PP → P NP  1.0 
 
N → people  0.5  
N → fish    0.2 
N → tanks  0.2 
N → rods   0.1 
V → people  0.1 
V → fish     0.6 
V → tanks   0.3 
P → with   1.0 

Call buildTree(score, back) to get the best parse 

Example showing filled-in CKY chart for a PCFG 
for sentence “fish people fish tanks” 
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Need for Treebanks  

•  Before you can parse you need a grammar. 
•  So where do grammars come from? 

–  Grammar Engineering 
•  Hand-crafted decades-long efforts by humans to write grammars 

(typically in some particular grammar formalism of interest to the 
linguists developing the grammar). 

–  TreeBanks 
•  Semi-automatically generated sets of parse trees for the sentences 

in some corpus. Typically in a generic lowest common 
denominator formalism (of no particular interest to any modern 
linguist, but representing phrases of text in actual use). 

Section on Treebanks and probabilistic parsing from Jim Martin’s online slides. 



The rise of annotated data 

•  Starting off, building a treebank seems a lot slower and less 
useful than building a grammar 

•  But a treebank gives us many things 
–  Reusability of the labor 

•  Many parsers, POS taggers, etc. 
•  Valuable resource for linguistics 

–  Broad coverage 
–  Frequencies and distributional information 
–  A way to evaluate systems on the same text 
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Penn Treebank 
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( (S 
    (NP-SBJ (DT The) (NN move)) 
    (VP (VBD followed) 
      (NP 
        (NP (DT a) (NN round)) 
        (PP (IN of) 
          (NP 
            (NP (JJ similar) (NNS increases)) 
            (PP (IN by) 
              (NP (JJ other) (NNS lenders))) 
            (PP (IN against) 
              (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans)))))) 
      (, ,) 
      (S-ADV 
        (NP-SBJ (-NONE- *)) 
        (VP (VBG reflecting) 
          (NP 
            (NP (DT a) (VBG continuing) (NN decline)) 
            (PP-LOC (IN in) 
              (NP (DT that) (NN market))))))) 
    (. .))) 

[Marcus et al. 1993, Computational Linguistics] 



Getting grammar from a treebank 

•  Given an annotated sentence, 
 
 
 
 

•  We can make a grammar rule: 
 
 

•  And we’ll make rules for sub-trees as well 
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Sample Rules for Noun Phrases 
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TreeBank Grammars 

•  Reading off the grammar… 
•  The grammar is the set of rules (local subtrees) that occur 

in the annotated corpus 
•  They tend to avoid recursion (and elegance and parsimony) 

–  i.e. they tend to the flat and redundant 

•  Penn TreeBank (III) has about 17500 grammar rules under 
this definition. 

•  But the main use of the Treebank is to provide the 
probabilities to inform the statistical parsers, and the 
grammar does not actually have to be generated. 

•  The grammar hovers behind the Treebank;  it is in the 
minds of the human annotators (and in the annotation 
manual!) 



Probabilistic Context-Free Grammars 

•  By way of introduction to statistical parsers, we first 
introduce the idea of associating probabilities with grammar 
rewrite rules. 
–  Attach probabilities to grammar rules 
–  The expansions for a given non-terminal sum to 1 

  VP -> Verb   .55 
  VP -> Verb NP   .40 
  VP -> Verb NP NP  .05 
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Getting the probabilities 

•  From a treebank of annotated data, get the probabilities 
that any non-terminal symbol is rewritten with a particular 
rule 
•  So for example, to get the probability for a particular VP rule just 

count all the times the rule is used and divide by the number of 
VPs overall. 

•  The parsing task is to generate the parse tree with the 
highest probability (or the top n parse trees) 

•  The probability of a parse tree is the product of the 
probabilities of the rules used in the derivation 
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Typical Approach 

•  Use CKY as the backbone of the algorithm 
•  Assign probabilities to constituents as they are completed 

and placed in the table 
•  Use the max probability for each constituent going up 

26 



Problems with PCFG Parsing 

•  But this typical approach always just picks the most likely 
rule in the derivation 
–  For example, if it is more likely that a prepositional phrases attaches 

to the noun phrase that it follows instead of the verb, then the 
probabilistic parser will always attach prepositional phrases to the 
closest noun 

•  The probability model we’re using is only based on the 
rules in the derivation… 
–  Doesn’t use the words in any real way 
–  Doesn’t take into account where in the derivation a rule is used 

•  E.g. the parent of the non-terminal of the derivation 
–  Doesn’t really work 

•  Most probable parse isn’t usually the right one (the one in the 
treebank test set). 

27 
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Lexicalized Parsing 

•  Add lexical dependencies to the scheme… 
–  Integrate the preferences of particular words into the probabilities in 

the derivation 
–  i.e. Condition the rule probabilities on the actual words 

•  To do that we’re going to make use of the notion of the head 
of a phrase 
–  The head of an NP is its noun 
–  The head of a VP is its verb 
–  The head of a PP is its preposition 
(It’s really more complicated than that but this will do.) 

•  Main parsing breakthrough idea of the 1990’s 
•  Expand the set of phrase types with phrase type/word 

•  In practice, we learn probabilities to automatically detect head words 
 
 



Example (right) 

•  Should we attach the prepositional phrase with head “into” to 
the verb “dumped”? 
 
 
 
 
 
 
 
 
 
 

•  In this tree, each phrase type, such as NP or VP, is also shown with its 
attached head word. 
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Example (wrong) 
•  Or should we attach the prepositional phrase with head 

“into” to the noun “sacks”? 
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Preferences 

•  The issue here is the attachment of the PP. So the 
affinities we care about are the ones between 
dumped and into vs. sacks and into. 
–  So count the places where dumped is the head of a constituent that has 

a PP daughter with into as its head and normalize 
–  Vs. the situation where sacks is a constituent with into as the head of a 

PP daughter. 
•  In general, collect statistics on preferences (aka affinities) 

–  Use verb subcategorization 
•  Particular verbs have affinities for particular VPs 

–  Objects affinities for their predicates (mostly their mothers and 
grandmothers) 

•  Some objects fit better with some predicates than others 
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Preference example 

•  Consider the VPs 
–  Ate spaghetti with gusto 
–  Ate spaghetti with marinara 

•  The affinity of gusto for eat is much larger than its 
affinity for spaghetti 

•  On the other hand, the affinity of marinara for 
spaghetti is much higher than its affinity for ate 
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Preference Example (2) 

•  Note the relationship here is more distant and doesn’t 
involve a headword since gusto and marinara aren’t the 
heads of the PPs. 

Vp (ate) Vp(ate) 

Vp(ate) Pp(with) 
Pp(with) 

Np(spag) 

np v v 
Ate spaghetti with marinara Ate spaghetti with gusto 

np 



Note 

•  Jim Martin:  “In case someone hasn’t pointed this out yet, 
this lexicalization stuff is a thinly veiled attempt to 
incorporate semantics into the syntactic parsing process… 
–  Duhh..,. Picking the right parse requires the use of semantics.” 
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Last Points 
•  Statistical parsers are getting quite good, but it’s still quite 

challenging to expect them to come up with the correct 
parse given only statistics from syntactic information. 

•  But if our statistical parser comes up with the top-N parses, 
then it is quite likely that the correct parse is among them. 

•  Lots of current work on 
–  Re-ranking to make the top-N list even better. 

 
•  There are also grammar-driven parsers that are competitive 

with the statistical parsers, notably the CCG (Combinatory 
Categorial Grammar) parsers 

 



10/7/13 
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Evaluation 
•  Given that it is difficult/ambiguous to produce the entire 

correct tree, look at how much of content of the trees are 
correctly produced 
–  Evaluation measures based on the correct number of constituents (or 

sub-trees) in the system compared to the reference (gold standard) 
•  Precision 

–  What fraction of the sub-trees in our parse matched corresponding 
sub-trees in the reference answer 

•  How much of what we’re producing is right? 
•  Recall 

–  What fraction of the sub-trees in the reference answer did we 
actually get? 

•  How much of what we should have gotten did we get? 
•  F-measure combines precision and recall to give an overall 

score. 
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Evaluation 

•  An additional evaluation measure that is often reported is 
that of Crossing Brackets errors, in which the subtrees are 
equal, but they are put together in a different order. 

Parser hypothesis Reference answer 

((A B) C) (A (B C)) 



Available Parsers 
•  Among the family of lexicalized statistical parsers are the well-

known Collins parser (Michael Collins 1996, 1999) and the 
Charniak parser (1997) 
–  both are publicly available and widely used in NLP, for non-commercial 

purposes. 

•  The Charniak series of parsers is still under development, by 
Eugene Charniak and his group; it produces N-best parse trees. 
–  Its evaluation is currently the best on the Penn Treebank at about 91% F 

measure. 

•  Another top performing parser, originally by Dan Klein and 
Christopher Manning, is available from the Stanford NLP group 
–   combines “separate PCFG phrase structure and lexical dependency 

experts”. 
–  Demo at:  http://nlp.stanford.edu:8080/parser/ 
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Available Parsers 

•  The CCG parsers are available from their open source page 
–  http://groups.inf.ed.ac.uk/ccg/software.html 

 

•  Parsers are also available through the OpenNLP project, 
with the OpenNLP API: 
–  http://opennlp.sourceforge.net/ 
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Partial Parsing 
•  For many applications you don’t really need a full-blown 

syntactic parse. You just need a good idea of where the base 
syntactic units are. 
–  Often referred to as chunks. 

•  For example, if you’re interested in locating all the people, 
places and organizations in a text it might be useful to know 
where all the base NPs are. 

•  A full partial parse would have chunks for all the text, but 
with no hierarchical structure: 
 
 

•  A partial parse for just base NPs would be: 
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Rule-Based Partial Parsing 

•  Restrict the form of rules to exclude recursion 
(make the rules flat). 

•  Group and order the rules so that the RHS of the 
rules can refer to non-terminals introduced in 
earlier rules but not later ones. 

•  Write regular expressions to recognize the right-
hand-side of rules, starting from the later ones. 

•  For complete chunking, typical ordering: 
–  Base syntactic phrases 
–  Larger verb and noun groups 
–  Sentential level rules 
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Partial Parsing 

•  No direct or indirect 
recursion allowed in 
these rules. 

•  That is you can’t 
directly or indirectly 
reference the LHS of 
the rule on the RHS. 
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Evaluation 

•  For evaluation, we need a metric that works at the level of the 
chunks. 

•  Precision: 
–  The fraction of chunks the system returned that were right 

•  “Right” means the boundaries and the label are correct given some 
labeled test set. 

•  Recall: 
–  The fraction of the chunks that system got from those that it should have 

gotten. 

•  F measure: Harmonic mean of those two numbers.  



Dependency Parsing 

•  Dependency parsing has some resemblance to lexicalized 
parsing because of the importance of the lexical entities 
(words) to capturing the syntactic structure 

•  But dependency parsing produces a simpler representation 
of the structure. 
–  Can be easier to use in some semantic applications 

44 



Transition-based parsers 

•  A typical parser of this type is that of Nivre 2004, which is a 
bottom-up “span” parser 
–  A shift/reduce parser that adds dependency relations 

•  Operation of parser: 
–  State:  stack of partially processed items and a queue of remaining 

tokens 
–  Transitions:  add dependency arcs; stack or queue operations 

•  Operations are 
–  Build left arc 
–  Build right arc 
–  Shift 
–  Reduce 
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Training the Parser 

•  How does the parser know which operation, and arc label, to 
apply? 

•  It learns these from the annotated corpus. 
•  For English, dependency grammar relations are derived 

from Penn Treebank 
•  Then a collection of examples is extracted from the text to 

train the parser 
–  Each example consists of a set of features representing the state of 

the parser, including the next word, previous word, POS tags, etc. 
–  A machine learning algorithm is applied to learn a classifier, which 

can assign a parsing operation to every parsing state 
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Non-Projective Parsing 

•  The bottom-up span parser is for projective parsing; but 
there is also a technique to add non-projective relations after 
the parse 
–  Nivre 2008 

•  Alternate technique is due to Ryan McDonald, 2005, which 
converts the dependency parsing problem to that of finding 
a maximal spanning tree in the dependency graph. 
–  Again, the dependencies in the graph are learned from the annotated 

corpus of Penn Treebank 

•  Non-projective dependency is still an active area of research 
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