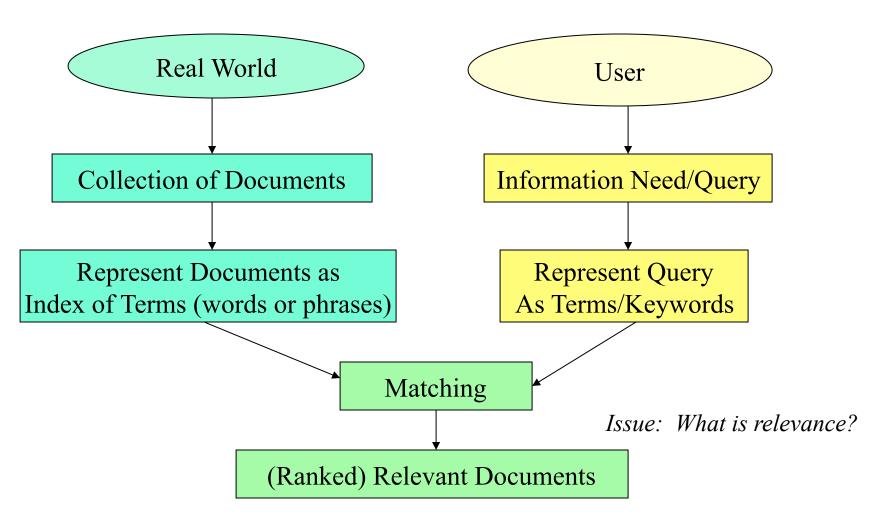
Information Retrieval and Web Search


What is Information Retrieval (IR)

- Gerard Salton, 1968: Information retrieval is a field concerned with the structure, analysis, organization, storage, searching and retrieval of information
- Manning, Raghavan and Schutze, 2008: Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers)
 - "Document" is the generic term for an information holder (book, chapter, article, webpage, etc)
- Web Search is the branch of IR where the collection of documents are those located on the web

What is tough about IR?

- One issue is how to **represent documents** so others might retrieve them
 - Need to match the text of the document with the query
 - In full, free-text systems this is an issue because documents and queries are expressed in language
 - and language is synonymous and polysemous
 - methods for solving the language issue are difficult
 - Sometimes called the **vocabulary gap** or mismatch
- Given the retrieval of some documents how to decide which ones are **most relevant** to the user's query
 - Most often implemented as a ranking of the resulting documents

Typical Information Retrieval System

Text Retrieval Conference (TREC)

- Co-sponsored by the National Institute of Standards and Technology (NIST) & the Defense Advanced Research Projects Agency (DARPA)
 - Begun in 1992
- Purpose is to support research within the information retrieval community by providing the infrastructure necessary for large-scale evaluation of text retrieval methodologies.
 - Provides document collections, queries and human judges
 - Main IR track was called the "Ad-Hoc Retrieval Track"
- Has grown in the number of participating systems and the number of tracks each year.
 - Tracks have included cross-language retrieval, filtering, question answering, interactive, web, novelty, video, blog search ...

IR System Research

- Traditional IR System research assumes that a user is interested in finding out information on a particular topic
- TREC collections and research experiments
 - build IR systems with different retrieval models
 - test against a standard collection of newswire documents
 - human evaluators judge relevant documents
 - report system evaluations in terms of precision and recall
 - Example type of query:

I am interested in all documents that discuss oil reserves and current attempts to find new reserves, particularly those that discuss the international financial aspects of the oil production process.

Information Needs

- Other branches of research focus on the user and whether the user's underlying information seeking is satisfied
- Early theories by Belkin, Oddy, etc.
 - Functions of the retrieval system to model the user's information need in an interactive retrieval session:
 - Characterize User
 - Get initial information need
 - Develop need context
 - Formulate information need
 - Conduct search for documents
 - Evaluate results
 - Feedback from user

IR Systems: Constructing the Index

- Process documents and identify terms to be indexed
 - Terms are often just the words
 - Usually stemming is applied and stop words removed
 - Sometimes basic noun phrases are also added, particularly proper names
- Compute weights of terms, depending on model definition
- Build index, a giant dictionary mapping terms to documents
 - For each term,
 - keep a list of documents that it occurs in
 - weights

IR Systems: Models

- Vector Space Models
 - Widely used weights known as TF/IDF (term frequency / inverted document frequency)
 - TF frequency of the term in the document (normalized by document length)
 - Intuition: more frequently occurring terms are more important
 - IDF invert the document frequency, the number of documents in the collection that the term occurs in
 - Intuition: terms occurring in all documents are less important to distinguish which ones are relevant to the query
- Other models include
 - Probabilistic models
 - Language models
 - Boolean models

IR Systems: Queries and matching

- Natural language queries are converted to terms, usually called keywords
 - In web search, typical queries are keywords already
- Query terms are used to retrieve documents from the index
- Model defines how to match query terms to documents, using the weights, and usually resulting in a score for each document
- Documents are returned in order of relevance score

IR Systems: Evaluation

- Human judgments as to whether returned documents are relevant to the query
- Precision and recall can be used to evaluate a set of returned documents

Human judgments ->		
System:	Relevant	Non-Relevant
	a	b
Retrieved	(true positives)	(false positives)
	С	d
Non-Retrieved	(false negatives)	(true negatives)

Precision =
$$a/a + b$$

Recall =
$$a/a+c$$

IR Systems: Another Evaluation Measure

- The F-measure is a combination of recall and precision, averaged using the harmonic mean
 - Let P be precision and R be recall

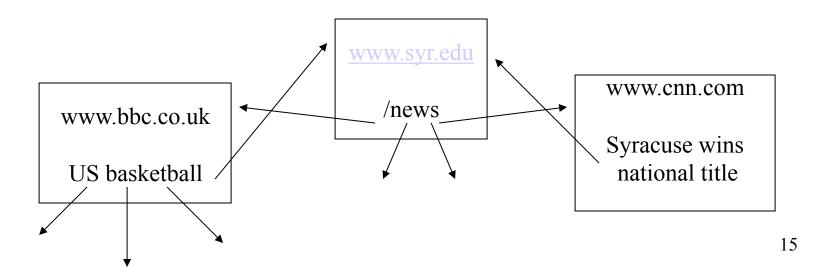
$$F = (\beta^2 + 1) PR / (\beta^2) P + R$$

– Typically, the measure is used for $\beta = 1$, giving equal weight to precision and recall

$$F_{\beta=1} = 2 PR / P + R$$

- Ranked Retrieval Evaluation
 - Given the top k ranked documents, compute precision and recall at every position
 - Mean Average Precision
 - Average the precisions over all positions k in the ranking

IR Systems: Improving Retrieval


- Query expansion, adding semantically similar words or context words
 - For example, use WordNet to add synonyms to query terms
 - What sense to use? The first?
 - Results are mixed
 - Synonyms added for incorrect sense will throw results off badly
- Relevance Feedback
 - One technique consistently shown to improve retrieval
 - Human relevance feedback after human has selected a few really relevant documents, add terms from those documents to the query
 - Pseudo-relevance feedback
 - Perform one retrieval and assume that the top n documents are relevant
 - Use those documents to add terms to the query

Web Search

- With the advent of the Web, basic IR was applied to this scenario of linked documents world wide
 - Company like Google keeps a giant index of documents for search
- Why/How would IR be different on the Web
 - Compared to a database of documents, the Web
 - Is far larger
 - Is more dynamic: web sites update whenever, links may not be permanent
 - Collection frequencies needed for Inverse Document Frequency (IDF) are so impermanent
 - Quality control of documents on the web is not present
 - No such thing as a complete inverted file for the entire web many hidden pages
 (Deep Web)
 - Importance of ranking results
 - Impact of pay for ranking

The Web has structure: Web Graph

- View the collection of static web pages as a graph with "hyperlinks" between them
- Hyperlink in HTML, given by the anchor tag, will give the URL of another web page
 - in-degree is the number of links coming to a page from other pages
 - out-degree is the number of links on the page

Building Search Engines: Web Crawling

- In order to build an index of documents for web search, the web crawler, or spider, has to locate documents
- Required Features:
 - Robustness it must not get stuck in dead ends or loops
 - Politeness it must not overwhelm any web server with too fast or too many requests
 - web servers set politieness policies

Desired Features

- Quality should try to give "useful" pages priority
- Freshness should obtain updated pages so that the web index has a fairly current version of the web page
- Performance and efficiency, scalability, operate in a distributed fashion

Building Search Engines: Web Document Processing

- Find content and process into tokens for traditional use in IR indexing
 - content may be text in-between tags
 - image tags may have text attributes to describe the image
 - may discard javascript and other computational elements
 - may even try to discard "noisy" text in the form of web site navigation, standard copyright notices, etc.
 - one technique is to observe that real content text has fewer tags per token than non-content text
- Keywords may be added to the document that don't appear directly in the content
 - metadata tags may have keywords
 - special weights may be added for tokens appearing in header tags
 - anchor text from other pages (see next slide)

Building Search Engines: Anchor Text

- Sometimes the text content of a web page does not contain generally descriptive words for that page
 - home page for IBM did not contain the word "computer"
 - home page for Yahoo did not contain the word "portal"
- Generally descriptive words may be found in anchor text of links, or even near it, that occur in other pages

```
<a href="www.ibm.com"> Big Blue </a>
<a href="www.ibm.com"> Big Blue </a>
<a href="www.ibm.com"> title="IBM"> Big Blue </a>
<a href="www.ibm.com" title="IBM"> Big Blue </a>
an example of a large computing firm is
<a href="www.ibm.com"> here </a>
```

- typically, we disregard anchor text words such as "click" and "here"

Building Search Engines: Link Analysis

- Link analysis can be viewed as a development of citation analysis for the web
 - Bibliographic citation analysis used book and article references
 - Bibliometric analysis of bibliographic citation links
 - Web examples: Web of Science from ISI / Citeseer
- The intuition behind link analysis is that a hyperlink from page A to page B represents an endorsement of page B, by the creator of page A.
 - not true for some links, such as links to adminstrative notices on corporate websites - "internal" links are typically discounted.
- Two major algorithms, PageRank and HITS, that give scoring weights for web pages
 - such weights are combined with other weights from content tokens and many other ranking criteria

Additional Criteria for Ranking

- Popularity what are the current topics of the day?
 - Collected from blogs and previous queries
- Click-through results statistics about which pages users click-on after getting ranked results can inform ranking algorithms to improve later rankings
- Context keep track of the user's interests, location, situation
 - What do other users like this one like?
- Learning to rank use machine learning on ranked relevance results to improve rankings
 - Importance of getting relevant documents in the top 10 list
 - Search engine companies have large amounts of data, including relevance judgments in terms of what documents users click on after a query

20

Evaluating Ranked Retrieval Results

- Evaluation measure: Discounted Cumulative Gain (DCG)
 - Measures relevance at each ranked position
 - Penalizes highly relevant documents that are lower down in the ranks
 - nDCG normalizes over queries (of different lengths)
- Experiments for search engines
 - User judgments are good, but are necessarily small in scope
 - A/B testing
 - Deploy an experimental search engine to some users (group B) while other users get "normal" search engine (group A)
 - Use "click-through" judgments as to which results the users thought would be relevant
 - Evaluate which relevant results are highest ranked

Search Engine Company Data Centers

- Google designs data centers specifically for web search
 - http://www.google.com/about/datacenters/
 - Uses lots of low-cost computers networked together
 - Design network and data algorithms for fast performance
 - Acknowledges 13 data centers around the world (probably 2 dozen more)
 - Each data center has up to 10,000 computers
 - Data center at The Dalles, Oregon

