Part-Of-Speech (POS) Tagging: Feature Classification Evaluation of Results
Recall HMM

- So an HMM POS tagger computes the tag transition probabilities (the A matrix) and word likelihood probabilities for each tag (the B matrix) from a (training) corpus.
- Then for each sentence that we want to tag, it uses the Viterbi algorithm to find the path of the best sequence of tags to fit that sentence.
- This is an example of a **sequential classifier**, and let’s look at how this is related to a more traditional classifier, which we might call a **feature-based classifier**.
 - Classification task: given a word in a sentence, what is its POS tag?
Comparison of HMM and feature-based classifiers

• Recall that HMM (and n-gram) taggers are sequential classifiers that use the previous sequence of tags as information:

\[
\begin{align*}
\text{word}_{n-1} & \quad \ldots \quad \text{word}_2 & \quad \text{word}_1 & \quad \text{word} \\
\text{tag}_{n-1} & \quad \ldots \quad \text{tag}_2 & \quad \text{tag}_1 & \quad \text{XX}
\end{align*}
\]

– In order from left to right, use information from previous tags (tag prior probabilities) and word (word likelihood probabilities) to predict the next tag in the sequence

• Instead a feature-based classifier is looking just at the word and properties/features of the surrounding words

\[
\begin{align*}
\text{word}_{-2} & \quad \text{word}_{-1} & \quad \text{word} & \quad \text{word}_{+1} & \quad \text{word}_{+2} \\
\text{XX}
\end{align*}
\]

– Assign a tag XX to the word
Evaluation: Is our POS tagger any good?

• Answer: we use a manually tagged corpus, which we will call the “Gold Standard”
 – We run our POS tagger on the gold standard and compare its predicted tags with the gold tags
 – We compute the accuracy (and other evaluation measures)

• Important: 100% is impossible even for human annotators.
 – We estimate humans can do POS tagging at about 98% accuracy.
 – Some tagging decisions are very subtle and hard to do:
 • Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
 • All/Dt we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
 • Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD
 – The “Gold Standard” will have human mistakes; humans are subject to fatigue, etc.
How can we improve our tagger?

• What are the main sources of information for our HMM POS tagger?
 – Knowledge of tags of neighboring words
 – Knowledge of word tag probabilities
 • *man* is rarely used as a verb….

• Unknown words (words not occurring in the training corpus) can be a problem because we don’t have this information

• And we are not including information about the features of the words
Feature-based Classifiers

• A feature-based classifier is an algorithm that will take a word and assign a POS tag based on features of the word in its context in the sentence.

• Many algorithms are used for these traditional classifiers, just to name a few
 – Naïve Bayes
 – Maximum Entropy (MaxEnt)
 – Support Vector Machines (SVM)

 – We’ll be covering lots more about classifiers later in the course.
Features of words

• Can do surprisingly well just looking at a word by itself:
 – Word the: the → DT (determiner)
 – Lowercased word Importantly: importantly → RB (adverb)
 – Prefixes unfathomable: un- → JJ (adjective)
 – Suffixes Importantly: -ly → RB
tangential: -al → JJ
 – Capitalization Meridian: CAP → NNP (proper noun)
 – Word shapes 35-year: d-x → JJ

• These properties can include information about the previous or the next word(s)
 – The word be appears to the left pretty → JJ

• But not information about tags of the previous or next words, unlike HMM
Development process for features

• The tagged data should be separated into a training set and a test set.
 – The tagger is trained on the training set and evaluated on the test set
 • May also hold out some data for development
 – Evaluation numbers are not prejudiced by the training set
• If our feature-based tagger has errors, then we improve the features.
 – Suppose we incorrectly tag *as* as IN in the phrase *as soon as*, when it should be RB:

 PRP VBD IN RB IN PRP VBD .
 They left as soon as he arrived .

 – We could fix this with a feature that include the next word.
Overview of POS tagger Accuracies

• List produced by Chris Manning

• Rough accuracies: all words / unknown words
 – Most freq tag: ~90% / ~50%
 – Trigram HMM: ~95% / ~55%
 • HMM with trigrams
 – Maxent P(t|w): 93.7% / 82.6%
 • Feature based tagger
 – MEMM tagger: 96.9% / 86.9%
 • Combines feature based and HMM tagger
 – Bidirectional dependencies: 97.2% / 90.0%
 – Upper bound: ~98% (human agreement)

Most errors on unknown words
POS taggers with online demos

- Many pages list downloadable taggers (and other resources) such as this page from the Stanford NLP group and George Dillon at U Washington
 - http://nlp.stanford.edu/software/gram.html
 - http://faculty.washington.edu/dillon/GramResources/

- There are not too many on-line taggers available for demos, but here are some possibilities:
 - The Stanford online parser demo includes POS tags:
 - Illinois (UIUC) tagger demo from the Cognitive Computation Group
 - http://cogcomp.cs.illinois.edu/demo/pos/?id=4 (colors!)
Stanford NLP demo

Stanford CoreNLP

Output format: Visualise

Please enter your text here:

```
Helicopters will patrol the temporary no-fly zone around New Jersey's MetLife Stadium Sunday, with F-16s based in Atlantic City ready to be scrambled if an unauthorized aircraft does enter the restricted airspace.
```

Submit Clear

Part-of-Speech:

<table>
<thead>
<tr>
<th>NNPS</th>
<th>MD</th>
<th>NN</th>
<th>DT</th>
<th>JJ</th>
<th>JJ</th>
<th>NN</th>
<th>IN</th>
<th>NNP</th>
<th>NNP</th>
<th>POS</th>
<th>NNP</th>
<th>NNP</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Helicopters will patrol the temporary no-fly zone around New Jersey's MetLife Stadium Sunday, with F-16s based in Atlantic City ready to be scrambled if an unauthorized aircraft does enter the</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Named Entity Recognition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Location</th>
<th>Org</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopters will patrol the temporary no-fly zone around New Jersey's MetLife Stadium Sunday, with F-16s based in Atlantic City ready to be scrambled if an unauthorized aircraft does enter the restricted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part of Speech Tagging Demo

737,457 views

If you wish to cite this work, please cite this publication.

Helicopters will patrol the temporary no-fly zone around New Jersey’s MetLife Stadium Sunday, with F-16s based in Atlantic City ready to be scrambled if an unauthorized aircraft does enter the restricted airspace.

Down below, bomb-sniffing dogs will patrol the trains and buses that are expected to take approximately 30,000 of the 80,000-plus spectators to Sunday’s Super Bowl between the Denver Broncos and Seattle Seahawks.

The Transportation Security Administration said it has added about two dozen dogs to monitor passengers coming...
Conclusions

• Part of Speech tagging is a doable task with high performance results

• Contributes to many practical, real-world NLP applications and is now used as a pre-processing module in most systems

• Computational techniques learned at this level can be applied to NLP tasks at higher levels of language processing