Parsing Algorithms: Charts
Solutions to parsing problems

- Modern parsing algorithms have three key ideas:
 - Solve the problem of performance with chart parsers
 - Solve the problems of pre-defining CFG or other grammars by using Treebanks and statistical parsing
 - Partially solve the problems of correctly choosing the best parse trees by using lexicalization (information about words from the Treebank)
Parsing Algorithms

• The simple parsers that we have seen are exponential in time (recursive descent with back-tracking) and (shift reduce with back-tracking)

• Avoid back-tracking and re-doing subtrees
 – Recall that the backtracking recursive descent expanded some subtrees multiple times
 – Use charts to record subtrees to avoid redundant computation

• Use forms of dynamic programming to search for good parse trees
 – Attempt to perform exponential process in polynomial time
Binarization reduces exponential process

- Where binarization means only reducing rules with 2 right hand side (RHS) symbols
 - Allows 2 dimensional charts

- All CFG grammars have a Chomsky Normal Form where every rule has no more than 2 symbols on the RHS
 - Example grammar rule with 3 RHS symbols:
 \[VP \rightarrow \text{Verb NP PP} \]
 - Transformed to equivalent grammar with only 2 RHS symbols:
 \[VP \rightarrow \text{Verb NP}_{\text{temp}} \]
 \[\text{NP}_{\text{temp}} \rightarrow \text{NP PP} \]
Chart Parsers

• CKY (Cocke-Kasami-Younger) algorithm is an example
 – Bottom-up parser (but can also have top down chart parsers)
 – Requires grammar to be in Chomsky Normal Form, with only two symbols on the right-hand-side of each production
 – Fills in a data structure called a chart or a parse triangle
 • Other parsers, such as Earley’s algorithm, use similar chart ideas to work on two subtrees at a time
• Key idea in parser development from 1970 - 1990
CKY Parsing

- For input of length n, fills a parse table triangle of size \((n, n)\), where each element has the non-terminal production representing the span of text from position \(i\) to \(j\).
 - Cells in first (bottom) layer describe trees of single words
 - Cells in second layer describes how rewrite rules can be used to combine trees in first layer for trees with two words
 - Etc.
Example showing filled-in CKY chart for a PCFG for sentence “fish people fish tanks” from Chris Manning