
Parsing:
Treebanks

Statistical Parsing

2

Need for Treebanks

•  Before you can parse you need a grammar.
•  So where do grammars come from?

–  Grammar Engineering
•  Hand-crafted decades-long efforts by humans to write

grammars (typically in some particular grammar formalism
of interest to the linguists developing the grammar).

–  TreeBanks
•  Semi-automatically generated sets of parse trees for the

sentences in some corpus (manually corrected by human
annotators). Typically in a generic lowest common
denominator formalism (of no particular interest to any
modern linguist, but representing phrases of text in actual
use).

Section on Treebanks and probabilistic parsing from Jim Martin’s online slides.

Classical Parsing

•  Another problem with grammar engineering
•  In addition to correctly finding multiple parses due to

structural ambiguity, typical grammars built before the
1990’s would overgeneralize
–  Real broad-coverage language grammar could give rise to millions

of parses on a single sentence

•  Structuring grammar to restrict parses would leave up to
30% of the sentence without parses

3

The rise of annotated data

•  Starting off, building a treebank seems a lot slower and less
useful than building a grammar

•  But a treebank gives us many things
–  Reusability of the labor

•  Many parsers, POS taggers, etc.
•  Valuable resource for linguistics

–  Broad coverage
–  Frequencies and distributional information
–  A way to evaluate systems on the same text

4

Penn Treebank
•  Example of manually annotated sentence structure

5

((S
 (NP-SBJ (DT The) (NN move))
 (VP (VBD followed)
 (NP
 (NP (DT a) (NN round))
 (PP (IN of)
 (NP
 (NP (JJ similar) (NNS increases))
 (PP (IN by)
 (NP (JJ other) (NNS lenders)))
 (PP (IN against)
 (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
 (, ,)
 (S-ADV
 (NP-SBJ (-NONE- *))
 (VP (VBG reflecting)
 (NP
 (NP (DT a) (VBG continuing) (NN decline))
 (PP-LOC (IN in)
 (NP (DT that) (NN market)))))))
 (. .)))

[Marcus et al. 1993, Computational Linguistics]

Getting grammar from a treebank

•  Given an annotated sentence,

•  We can make a grammar rule:

•  And we’ll make rules for sub-trees as well

6

7

Sample Rules for Noun Phrases

8

TreeBank Grammars

•  We could read off the grammar from the Treebank
–  The grammar is the set of rules (local subtrees) that occur in the

annotated corpus
–  They tend to avoid recursion (and elegance and parsimony)

•  i.e. they tend to the flat and redundant
–  Penn TreeBank (III) has about 17500 grammar rules under this

definition.

•  But the main use of the Treebank is to provide the
probabilities to inform the statistical parsers, and the
grammar does not actually have to be generated.

•  The grammar hovers behind the Treebank; it is in the
minds of the human annotators (and in the annotation
manual!)

Probabilistic Context-Free Grammars

•  By way of introduction to statistical parsers, we first
introduce the idea of associating probabilities with grammar
rewrite rules.
–  Attach probabilities to grammar rules
–  The expansions for a given non-terminal sum to 1

 VP -> Verb .55
 VP -> Verb NP .40
 VP -> Verb NP PP .05

9

Getting the probabilities

•  From a treebank of annotated data, get the probabilities
that any non-terminal symbol is rewritten with a particular
rule
•  So for example, to get the probability for a particular VP rule just

count all the times the rule is used and divide by the number of
VPs overall.

•  The parsing task is to generate the parse tree with the
highest probability (or the top n parse trees)

•  For a PCFG parser, the probability of a parse tree is the
product of the probabilities of the rules used in the
derivation

10

Typical Approach to PCFG parser

•  Use CKY as the backbone of the algorithm
•  Assign probabilities to constituents as they are completed

and placed in the table
•  Use the max probability for each constituent going up

11

Problems with PCFG Parsing

•  But this typical approach always just picks the most likely
rule in the derivation
–  For example, if it is more likely that a prepositional phrases attaches

to the noun phrase that it follows instead of the verb, then the
probabilistic parser will always attach prepositional phrases to the
closest noun

•  The probability model we’re using is only based on the
rules in the derivation…
–  Doesn’t use the words in any real way
–  Doesn’t take into account where in the derivation a rule is used

•  E.g. the parent of the non-terminal of the derivation
•  Most probable parse isn’t usually the right one (the one in the

treebank test set).

•  Collect statistics and use in a better way
12

