
Case Grammar 
Semantic Role Labeling 



2 

Semantics of events in sentences 

•  In a sentence, a verb and its semantic roles form a 
proposition;  the verb can be called the predicate and the 
roles are known as arguments. 

When Disney offered to pay Mr. Steinberg a premium for his shares, the 
New York investor didn’t demand the company also pay a premium to 
other shareholders. 
 
Example semantic roles for the verb “pay” (using verb-specific roles) 
 
When [payer Disney] offered to [V pay] [recipient Mr. Steinberg] [money a 
premium] for [commodity his shares], the New York investor … 



CASE Grammar 

•  Fillmore, Charles (1968) “The Case for Case.” 
•  A response to Chomsky’s disregard for any semantics 

–  “A semantically justified syntactic theory” 

•  Given a sentence, it is possible to say much more than this 
NP is the subject and this NP is the object 

•  Chomsky’s Transformational Grammar would reduce active 
& passive versions of the same deep structure, but doesn’t go 
far enough to reveal why this is is possible semantically 
–  A crowbar could open that door easily. 
–  That door could be opened easily with a crowbar. 



CASE Grammar 
•  Focuses on conceptual events 

–  for each event or situation, there is a limited number of 
roles/cases which people or objects play in the situation 

–  roles reflect ordinary human judgments about: 

•  Who did the action? 
•  Who / what was it done to? 
•  What was it done with? 
•  Where was it done? 
•  What was the result? 
•  When was it done? 



 CASE Grammar (cont’d) 

•  Syntactic similarities hide semantic dissimilarities 
•  We baked every Saturday morning. 
•  The pie baked to a golden brown. 
•  This oven bakes evenly. 

–  3 subject NPs perform very different roles in regard to bake 
 

•  Syntactic dissimilarities hide semantic similarities 
•  Johnagent broke the windowtheme. 
•  Johnagent broke the windowtheme with a rockinstrument. 
•  The rockinstrument broke the windowtheme. 
•  The windowtheme broke. 
•  The windowtheme was broken by Johnagent. 



Cases (aka Thematic Roles or Theta Roles) 

•  Fillmore’s original set of roles 
–  Agentive (A) 
–  Instrumental (I) 
–  Locative (L) 
–  Dative (D) 
–  Neutral (N) 
–  Factitive (F) 



Cases (cont’d) 

•  Agentive (A) 
–  the instigator of the action, an animate being 

•  John opened the door. 
•  The door was opened by John. 

•  Instrumental (I) 
–  the thing used to perform the action, an inanimate object 

•  The key opened the door. 
•  John opened the door with the key. 
•  John used the key to open the door. 



Cases (cont’d) 

•  Locative (L) 
–  the location or spatial orientation of the state or action identified by 

the verb 
•  Chicago is windy. 
•  It’s windy in Chicago. 

•  Dative (D) 
–  the case of animate being affected by the state or action identified 

by the verb 
•  John believed that he would win. 
•  We persuaded John that he would win. 
•  We made him a jacket. 



Cases (cont’d) 

•  Neutral (N) 
–  The thing being acted upon 

 
•  Objective (O): the case of anything representable by a 

noun whose role in the action or state is identified by the 
semantic interpretation of the verb itself 

•  The door opened. 
•  The wind opened the door. 

•  Factitive (F): the case of the object or being resulting 
from the action or state identified by the verb, or understood 
as a part of the meaning of the verb 

•  We made him a jacket. 



Verb-specific Roles 

•  Difficult to fit many verbs and roles into the general 
thematic roles 
–  Many general sets are proposed; not uniform agreement 
–  Generalized semantic roles now often called proto roles 

•  Proto-agent, proto-patient, etc. 

•  Verb-specific roles are proposed in systems 
–  PropBank annotates the verbs of Penn Treebank 

•  Extended with NomBank for nominalizations 
–  FrameNet annotates the British National Corpus 
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Propbank 
•  Propbank is a corpus with annotation of semantic roles, 

capturing the semantic role structure of each verb sense 
–  Funded by ACE to Martha Palmer and Mitch Marcus at U Penn 

•  Each verb sense has a frameset, listing its possible semantic 
roles 

•  Argument notation uses numbers for the annotation 
•  First sense of accept (accept.01) 

–  Arg0:  acceptor 
–  Arg1:  thing accepted 
–  Arg2:  accepted-from 
–  Arg3:  attribute 

•  The frameset roles are standard across all syntactic 
realizations in the corpus of that verb sense 
–  Each verb has a frameset file describing the args as above 

•  Example texts are also given 



12 

Roles consistent with VerbNet 
•  Propbank builds on VerbNet to assign more specific roles. 
•  VerbNet is one extension of Levin’s verb classes, giving semantic 

roles from about 20 possible roles 
–  Agent, Patient, Theme, Experiencer, etc. 
–  Similar to the theta roles 

•  Each class consists of a number of synonymous verbs that have the 
same semantic and syntactic role structure in a frame 

•  Whenever possible, the Propbank argument numbering is made 
consistent for all verbs in a VerbNet class. 

–  There is only 50% overlap between Propbank and VerbNet verbs. 
•  Example from frameset file for “explore”, which has a VN class: 

<roleset id="explore.01" name="explore, discover new places or things" vncls="35.4"> 
<roles> <role descr="explorer" n="0"> 
             <vnrole vncls="35.4" vntheta="Agent"/></role> 
             <role descr="thing (place, stuff) explored" n="1"> 
             <vnrole vncls="35.4" vntheta="Location"/></role> 
</roles> 
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Semantic Role Notation for Propbank 
•  The first two numbered arguments correspond, approximately, 

to the core case roles: 
–  Arg0 – Prototypical Agent 
–  Arg1 – Prototypical Patient or Theme 
–  Remaining numbered args are verb specific case roles, Arg2 through 

Arg5 
•  Another large groups of roles are the adjunctive roles (which 

can be applied to any verb) and are annotated as ArgM with a 
suffix: 
–  ArgM-LOC – location    ArgM-CAU - cause 
–  ArgM-EXT – extent    ArgM-TMP - time 
–  ArgM-DIR – direction    ArgM-PNC – purpose 
–  ArgM-ADV – general purpose adverbial  ArgM-MNR - manner 
–  ArgM-DIS – discourse connective   ArgM- NEG – negation 
–  ArgM-MOD – modal verb 
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Adjunctive and additional arguments 

•  Example of adjunctive arguments 
–  Not all core arguments are required to be present  

•  See Arg2 in this example. 
–  Arguments can be phrases, clauses, even partial words. 

 
 
 
 
 
 
 
 

When Disney offered to pay Mr. Steinberg a premium for his shares, the 
New York investor didn’t demand the company also pay a premium to 
other shareholders. 
 
Example of Propbank annotation (on demand): 
[ArgM-TMP When Disney offered to pay Mr. Steinberg a premium for his 
shares], [Arg0the New York investor ] did [ArgM-NEG n’t] [V demand] [Arg1 
the company also pay a premium to other shareholders]. 
 
Where for demand, Arg0 is “asker”, Arg1 is “favor”, Arg2 is “hearer” 
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Prepositional phrases and additional args 

•  Arguments that occur as the head of a prepositional phrase 
are annotated as the whole phrase 
–  Consistent with other ArgM’s that are prepositional phrases 

 
 [Arg1 Its net income] [V declining] [ArgM-EXT 42%] [Arg4 to $121 
million] [ArgM-TMP in the first 9 months of 1989] 
 

•  Additional arguments are 
–  ArgA – causative agents 
–  C-Arg* - a continuation of another arg (mostly for what is said) 
–  R-Arg* - refererence to another arg (mostly for “that”) 
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Propbank Annotations 
•  Framesets were created by looking at sample sentences 

containing each verb sense. 
–  ~ 4500 frames (in 3314 framesets for each verb) 

•  Corpus is primarily newswire text from Penn Treebank 
–  Annotated the Wall Street Journal section, and, more recently, the 

“Brown” corpus 
–  Verbs and semantic role annotations added to the parse trees 

•  Annotators are presented with roleset descriptions of a verb 
and the (gold) syntactic parses of a sentence in Treebank, 
and they annotate the roles of the verb. 
–  Lexical sampling – annotated on a verb-by-verb basis. 
–  ~40,000 sentences were annotated 

•  Interannotater agreement 
–  Identifying argument and classifying role:  99% 

•  kappa statistic of .91overall and .93 if ArgM’s excluded 
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FrameNet 

•  Project at International Computer Science Institute with 
Charles Fillmore 
–  http://framenet.icsi.berkeley.edu/ 

•  Similar goal to document the syntactic realization of 
arguments of predicates in the English language 

•  Starts from semantic frames (e.g. Commerce) and defines 
frame elements (e.g. Buyer, Goods, Seller, Money) 

•  Annotates example sentences chosen to illustrate all 
possibilities 
–  But latest release includes 132,968 sentences 
–  British National Corpus 
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Example of FrameNet frames 

•  Semantic frames are related by topic domain 
Domain:  Communication 

Frame:  Conversation 
Frame Elements: 
    Protagonist-1 
    Protagonist-2 
    Protagonists 
    Topic 
    Medium 

Frame:  Statement 
Frame Elements: 
    Speaker 
    Addressee 
    Message 
    Topic 
    Medium 

Frame:  Questioning 
Frame Elements: 
    Speaker 
    Addressee 
    Message 
    Topic 
    Medium 

talk   confer   discussion   tiff   converse …   
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Comparison of FrameNet and Propbank 
•  FrameNet semantic roles are consistent for semantically 

related verbs (not just synonyms as in the VerbNet subset 
of PropBank) 

•  Commerce examples: 
FrameNet annotation: 
[Buyer Chuck] bought [Goods a car] [Seller from Jerry][Payment for $1000]. 
[Seller Jerry] sold [Goods a car] [Buyer to Chuck] [Payment for $1000]. 
 
Propbank annotation: 
[Arg0 Chuck] bought [Arg1 a car] [Arg2 from Jerry][Arg3 for $1000]. 
[Arg0 Jerry] sold [Arg1 a car] [Arg2 to Chuck] [Arg3 for $1000]. 
 
Frame for buy:    Frame for sell: 
Arg0:  buyer    Arg0:  seller 
Arg1:  thing bought   Arg1:  thing sold 
Arg2:  seller    Arg2:  buyer 
Arg3:  price paid    Arg3:  price paid 
Arg4:  benefactive    Arg4:  benefactive 
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Automatic SRL 

•  Define an algorithm that will process text and recognize 
roles for each verb 

•  Assume previous levels of Natural Language Processing 
(NLP) on text 
–  Part-of-speech (POS) tagging, 
–   Chunking, i.e. recognizing noun and verb phrases,  
–  Clauses,  
–  Parse trees 

•  Machine Learning approaches are typical 
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Machine Learning Approach 
•  Given a verb in a sentence, the problem is to find and label all arguments 
•  Reformulate as a classification task:  For each constituent in the parse tree of 

the sentence, label it as to what argument, if any, it is for the verb 
 

•  For each constituent, define features of semantic roles 
–  Each feature describes some aspect of a text phrase that can help determine its 

semantic role of a verb 
•  Examples include what the verb is, POS tags, position in parse tree, etc. 

•  Machine Learning process: 
–  Training:   

•  collect examples of semantic roles with features and semantic role label 
•  ML training program uses examples to produce decision algorithm 

–  Classification: 
•  Run decision algorithm on text phrases and it will decide which, if any, 

semantic role it plays with respect to a verb 
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Parse Tree Constituents 
•  Each syntactic constituent is a candidate for labeling 
•  Define features from sentence processed into parse tree 

with Part-of-Speech tags on words 

DT  $   CD  CD  NN  NN      VBZ  DT  JJ      NN  TO  VB  NNP   CC  PRP$ CD JJ  NNS  . 
 
The $ 1.4 billion robot spacecraft faces a six-year journey to explore Jupiter and its 16 known moons . 

                                             S                                              
                                                       VP 
                               NP       NP 
                                    S 

       ADJP            VP 
              VP 

             QP                    NP 
           NP          NP  
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Typical Argument Features 
•  These features are defined for each constituent:  
•  PREDICATE:  The predicate word from the training data. 

–  “face” and “explore”  
–  Usually stemmed or lemmatized 

•  PHRASE TYPE: The phrase label of the argument candidate. 
–  Examples are NP, S, for phrases, or may be POS tag if a single word 

•  POSITION: Whether the argument candidate is before or after 
the predicate. 

•  VOICE: Whether the predicate is in active or passive voice. 
–  Passive voice is recognized if a past participle verb is preceded by a 

form of the verb “be” within 3 words. 
•  SUBCATEGORY: The phrase labels of the children of the 

predicate’s parent in the syntax tree. 
–  subcat of “faces” is “VP -> VBZ NP” 
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Argument Features 
•  PATH:  The syntactic path through the parse tree from the 

argument constituent to the predicate.  
–  Arg0 for “faces”:   NP -> S -> VP -> VBZ 

•  HEAD WORD:  The head word of the argument constituent 
–  Main noun of NP (noun phrase) 
–  Main preposition of PP (prepositional phrase) 

•  Many additional features 
–  Head Word POS: The part of speech tag of the head word of the 

argument constituent.  
–  Temporal Cue Words: Special words occurring in ArgM-TMP 

phrases. 
–  Governing Category: The phrase label of the parent of the argument. 
–  Grammatical Rule: The generalization of the subcategorization 

feature to show the phrase labels of the children of the node that is 
the lowest parent of all arguments of the predicate. 
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Highlights of Automatic SRL Research 

•  Burst of research in SRL from 2002 - 2009: 
–  different machine learning approaches 
–  features 

•  Gildea and Jurafsky, 2002.  Automatic labeling of semantic 
roles.  Computational Linguistics, 28(3):245-288.  Used a 
probabilistic model, full parse, on FrameNet. 

•  CoNLL-2004 shared task.  10 teams used a variety of 
approaches, chunks + clauses, Propbank. 

•  Senseval-3 semantic role task, 2004.  8 teams used a variety 
of approaches, full parses, FrameNet. 

•  CoNLL-2005 shared task.  21 teams used a variety of 
approaches, full parses, Propbank. 
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CoNLL-2005 Shared Task 
•  Each year, CoNLL defines a task to develop some aspect of 

natural language processing with systems that use machine 
learning. 
–  Provides data for training and developing systems for about 3 months 
–  Then provides test data; everyone runs their system and returns the 

results for scoring 
–  Competitive in that scores are published in a comparative way 
–  Collaborative in that a session of the annual conference is devoted to 

discussion of the progress in this task 
•  Novel approached are encouraged 

•  The CoNLL-2004 shared task aimed at evaluating machine 
learning SRL systems based on partial syntactic information. 
–  Best results are approximately 70 in F measure. 

•  The 2005 shared task evaluated machine learning SRL 
systems based on full parse information 
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Typical architecture  

•  Our system followed a typical architecture that utilizes 
two different machine learning phases 
–  Filter out implausible constituents from the parse trees 
–  Use a machine learning classifier to decide if each of the 

remaining constituents is an argument to the verb 
–  Use a machine learning classifier to decide which argument label 

(Arg0-Arg5, ArgM’s, etc.) to put on the argument 
–  Do some final constraint processing 

 

Argument  
Identifier 

Argument  
Labeler 

Constraint   
Processor 

Candidate  
Generator 
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Two-step classifier 

•  Both classifiers are trained with the libSVM Support Vector 
Machine software. 

•  libSVM is an open source software package 
–  http://www.csie.ntu.edu.tw/~cjlin/libsvm 

•  For the identification classifier 
–  Binary classifier to decide if each parse tree constituent is an 

argument 

•  For the labeling classifier 
–  N binary classifiers, each producing a probability estimate of 

whether an argument should have that label 
–  Use the probabilities in the constraint problem 
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Classifier Training Set 

•  18741 total number of features (attribute values) 
•  Example Count = 233100 

     
A0 =        60328  %25 
A1 =        79276  %34 
A2 =        18962   %8     
A3 =        3172   %1.3    
A4 =        2557   %1.1 
A5 =        68 

AM-LOC =   5688  
AM-DIR =    1113 
AM-DIS =    4869 
AM-MOD =  9180 
AM-CAU =   1165 
AM-TMP =  16031    
AM-MNR =  6208  
AM-PNC =   2175 
AM-ADV =  8005     
AM-NEG =   3220 

C-A0 =      109 
C-A1 =      2233     
R-A0 =      4104 
R-A1 =      2335 
R-AM-MNR =  143 
R-AM-LOC =  214     
others 
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SRL problem constraints 

•  Main constraints 
–  Two constituents cannot have the same argument label, 
–  A constituent cannot have more than one label 
–  If two constituents have (different) labels, they cannot have any 

overlap, 
–  No argument can overlap the predicate.   

•  Additional constraints: 
–  For R-Ax, there should be an Ax 
–  For C-Ax, there should be an Ax 
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Results of Argument Labeling Classifier 
•  Compare the results ofour CBC classifier on the entire SRL problem 

(identifier + labeler + post processor) with other systems (Koomen et 
al1), using a single parse tree, but from different parsers 

Precision Recall Fβ=1 

Charniak-1 75.40% 74.13% 74.76 
Charniak-2 74.21% 73.06% 73.63 
Charniak-3 73.52% 72.31% 72.91 
Collins 73.89% 70.11% 71.95 
CBC 80.63% 71.23% 75.64 

•  Results using a single parse tree are just part of the overall problem;  
best results (2005) combine results from different parse trees, e.g. 

Joint Inference 80.05% 74.83% 77.35 

1  Peter Koomen, Vasin Punyakanok, Dan Roth, and Wen-tau Yih.  Generalized inference with 
   multiple semantic role labeling systems.  Proceedings CoNLL-2005.  



Current Direction of SRL 
•  Best English SRL results combining parse trees or combining 

the parsing task with the SRL task (joint inference) are at just 
over F-measure of 80 

•  CoNLL 2009 shared task is SRL again, but systems combined 
dependency parsing with semantic role labeling. 
–  Joint detection of syntactic and semantic dependencies 
–  Richer syntactic dependency set to aid in semantic processing 

•  See http://barcelona.research.yahoo.net/conll2008/ for a description of the 
task for English 

•  English, Catalan, Chinese, Czech, German, Japanese, Spanish 
•  Most systems, including top scoring systems, did not use joint inference 

•  Unanswered question:  Can applications make good use of 
SRL? 
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